1. Deslandes, K. Wu, "Single-substrate integration technique of planar circuits and Waveguide filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 2, 593-596, 2003.
doi:10.1109/TMTT.2002.807820 Google Scholar
2. Khorand, T. and M. S. Bayati, "Novel half-mode substrate integrated waveguide bandpass filters using semi-hexagonal resonators," International Journal of Electronics and Communications (AEU), Vol. 95, 52-58, 2018.
doi:10.1016/j.aeue.2018.08.009 Google Scholar
3. Ananya, P., P. Athira, and S. Raghavan, "Miniaturized band pass filter in substrate integrated waveguide technology," International Journal of Engineering & Technology, Vol. 7, No. 3.13, 95-98, 2018.
doi:10.14419/ijet.v7i3.13.16332 Google Scholar
4. Ananya, P., P. Athira, and S. Raghavan, "Miniaturizing SIW filters with SLOW-wave technique," AEU --- Int. J. Electron. Commun., Vol. 84, 360-365, 2018. Google Scholar
5. Bozzi, M., G. Apostolos, and K. Wu, "Review of substrate-integrated waveguide circuits and antennas," Microwaves, Antennas & Propagation, Vol. 5, 909-920, IET, 2011.
doi:10.1049/iet-map.2010.0463 Google Scholar
6. Krushna Kanth, V. and S. Raghavan, "EM design and analysis of a substrate integrated waveguide based on a frequency-selective surface for millimeter wave radar application," J. Comput. Electron., Vol. 18, 189-196, 2019.
doi:10.1007/s10825-018-1272-z Google Scholar
7. Krushna Kanth, V. and R. Singaravelu, "Design of a hybrid A-sandwich radome using a strongly coupled frequency selective surface element," International Journal of Microwave and Wireless Technologies, Vol. 12, No. 8, 738-748, 2020.
doi:10.1017/S1759078720000021 Google Scholar
8. Krushna Kanth, V. and R. Singaravelu, "Design and implementation of 2.5D frequency selective surface based on substrate integrated waveguide technology," International Journal of Microwave and Wireless Technologies, Vol. 11, No. 3, 255-267, 2019.
doi:10.1017/S1759078718001678 Google Scholar
9. Tomassoni, C., L. Silvestri, M. Bozzi, and L. Perregrini, "Substrate-integrated waveguide filters based on mushroom-shaped resonators," International Journal of Microwave and Wireless Technologies, Vol. 8, No. 4-5, 741-749, 2016.
doi:10.1017/S1759078716000453 Google Scholar
10. Chen, C. and J. Qin, "Triple-mode dual-band bandpass filter based on cross-shaped substrate integrated waveguide," Electronics Letters, Vol. 55, No. 3, 138-140, 2018.
doi:10.1049/el.2018.7172 Google Scholar
11. Xu, J., J. J. Bi, Z. L. Li, and R. S. Chen, "Optimization of SIW band-pass filter with wide and sharp stopband using space mapping," International Journal of Electronics, Vol. 103, No. 12, 2042-2051, 2016.
doi:10.1080/00207217.2016.1178338 Google Scholar
12. Aghayari, H., N. Komjani, and N. M. Garmjani, "A novel H plane filter using double-layer substrate integrated waveguide with defected ground structures," International Journal of Electronics, Vol. 100, No. 6, 851-862, 2013.
doi:10.1080/00207217.2012.727101 Google Scholar
13. Chaudhury, S. S., S. Awasthi, and R. K. Singh, "Dual band bandpass filter based on substrated integrated waveguide loaded with mushroom resonators," Microw. Opt. Technol. Lett., Vol. 62, 2226-2235, 2020.
doi:10.1002/mop.32315 Google Scholar
14. Chen, L.-N., Y.-C. Jiao, Z. Zhang, and F.-S. Zhang, "Miniaturized substrate integrated waveguide dual-mode filters loaded by a series of cross-slot structures," Progress In Electromagnetics Research C, Vol. 29, 29-39, 2012.
doi:10.2528/PIERC12032302 Google Scholar
15. Zhang, Q., W. Yin, S. He, and L. Wu, "Compact Substrate Integrated Waveguide (SIW) bandpass filter with Complementary Split-Ring Resonators (CSRRs)," IEEE Microwave and Wireless Components Letters, Vol. 20, No. 8, 426-428, 2010.
doi:10.1109/LMWC.2010.2049258 Google Scholar
16. Li, W., Z. Tang, and X. Cao, "Design of a SIW bandpass filter using defected ground structure with CSRRs," Active and Passive Electronic Components, 6 pages, 2017. Google Scholar
17. Wu, L., X. Zhou, Q. Wei, and W. Yin, "An extended doublet Substrate Integrated Waveguide (SIW) bandpass filter with a Complementary Split Ring Resonator (CSRR)," IEEE Microwave and Wireless Components Letters, Vol. 19, No. 12, 777-779, 2009.
doi:10.1109/LMWC.2009.2034034 Google Scholar
18. Dong, D., T. Yang, and T. Itoh, "Substrate integrated waveguide loaded by complementary split-ring resonators and its applications to miniaturized waveguide filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, No. 9, 2211-2223, 2009.
doi:10.1109/TMTT.2009.2027156 Google Scholar
19. Pu, J., F. Xu, and Y. Li, "Miniaturized substrate integrated waveguide bandpass filters based on novel complementary split ring resonators," IEEE MTT-S International Microwave Biomedical Conference (IMBioC), Nanjing, China, 2019. Google Scholar
20. Jiang, W., W. Shen, L. Zhou, and W.-Y. Yin, "Miniaturized and highselectivity Substrate Integrated Waveguide (SIW) bandpass filter loaded by Complementary Split-Ring Resonators (CSRRs)," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 11-12, 1448-1459, 2012.
doi:10.1080/09205071.2012.702203 Google Scholar
21. Park, W.-Y. and S. Lim, "Miniaturized half-mode substrate integrated waveguide bandpass filter loaded with double-sided complementary split-ring resonators," Electromagnetics, Vol. 32, No. 4, 200-208, 2012.
doi:10.1080/02726343.2012.672037 Google Scholar
22. Huang, L., I. D. Robertson, N. Yuan, and J. Huang, "Novel substrate integrated waveguide bandpass filter with broadside-coupled complementary split ring resonators," IEEE/MTT-S International Microwave Symposium Digest, Montreal, QC, Canada, 2012. Google Scholar
23. Ghayoumi Zadeh, H. and M. Danaeian, "Miniaturized substrate integrated waveguide filter using fractal open complementary split-ring resonators," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 28, 2018. Google Scholar
24. Yan, T., X.-H. Tang, Z.-X. Xu, and D. Lu, "A novel type of bandpass filter using complementary open-ring resonator loaded HMSIW with an electric cross-coupling," Microwave and Optical Technology Letters, Vol. 58, 998-1001, 2016.
doi:10.1002/mop.29719 Google Scholar
25. Chu, P., et al. "Dual-mode substrate integrated waveguide filter with flexible response," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 3, 824-830, March 2017.
doi:10.1109/TMTT.2016.2633346 Google Scholar
26. Angiulli, G., E. Arnieri, D. De Carlo, and G. Amendola, "Feed forward neural network characterization of circular SIW resonators," IEEE Antennas and Propagation Society International Symposium, San Diego, CA, USA, 2008. Google Scholar
27. Amendola, G., G. Angiulli, E. Arnieri, L. Boccia, and D. De Carlo, "Characterization of lossy SIW resonators based on multilayer perceptron neural networks on graphics processing unit," Progress In Electromagnetics Research C, Vol. 42, 1-11, 2013.
doi:10.2528/PIERC13051001 Google Scholar
28. Li, J. and T. Dong, "Design of a substrate integrated waveguide power divider that uses a neural network," 2nd International Conference on Computer Engineering and Technology, Chengdu, China, 2010. Google Scholar
29. Zhang, Z., Q. S. Cheng, H. Chen, and F. Jiang, "An efficient hybrid sampling method for neural network-based microwave component modeling and optimization," IEEE Microwave and Wireless Components Letters, Vol. 30, No. 7, 625-628, 2020.
doi:10.1109/LMWC.2020.2995858 Google Scholar