1. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Techn., Vol. 47, No. 11, 2075-2084, 1999.
doi:10.1109/22.798002 Google Scholar
2. Smith, D. R., D. C. Vier, Th. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E, Vol. 71, No. 3, 036617, 2005.
doi:10.1103/PhysRevE.71.036617 Google Scholar
3. Marques, R., F. Mesa, J. Martel, and F. Medina, "Comparative analysis of edge- and broadside-coupled split ring resonators for metamaterial design --- Theory and experiments," IEEE Trans. Antennas Propagat., Vol. 51, No. 10, 2572-2581, 2003.
doi:10.1109/TAP.2003.817562 Google Scholar
4. Bonache, J., I. Gil, J. Garcia-Garcia, and F. Martin, "Novel microstrip bandpass filters based on complementary split-ring resonators," IEEE Trans. Microwave Theory Techn., Vol. 54, No. 1, 265-271, 2006.
doi:10.1109/TMTT.2005.861664 Google Scholar
5. Gil, M., J. Bonache, J. Selga, J. Garcia-Garcia, and F. Martin, "High-pass filters implemented by composite right/left handed (CRLH) transmission lines based on complementary split rings resonators (CSRRs)," PIERS Online, Vol. 3, No. 3, 251-253, 2007.
doi:10.2529/PIERS060802072849 Google Scholar
6. Martin, F., F. Falcone, J. Bonache, R. Marques, and M. Sorolla, "Miniaturized coplanar waveguide stop band filters based on multiple tuned split-ring resonators," IEEE Microw. Wireless Compon. Lett., Vol. 13, No. 12, 511-513, 2003.
doi:10.1109/LMWC.2003.819964 Google Scholar
7. Saadoun, M. M. I. and N. Engheta, "A reciprocal phase shifter using novel pseudochiral or ω medium," Microw. Opt. Technol. Lett., Vol. 5, No. 4, 184-188, 1992.
doi:10.1002/mop.4650050412 Google Scholar
8. Antoniades, M. A. and G. V. Eleftheriades, "A broadband series power divider using zero-degree metamaterial phase-shifting lines," IEEE Microw. Wireless Compon. Lett., Vol. 15, No. 11, 808-810, 2005.
doi:10.1109/LMWC.2005.859007 Google Scholar
9. Ziolkowski, R. W. and A. D. Kipple, "Application of double negative materials to increase the power radiated by electrically small antennas," IEEE Trans. Antennas Propagat., Vol. 51, No. 10, 2626-2640, 2003.
doi:10.1109/TAP.2003.817561 Google Scholar
10. Arnedo, I., J. Illescas, M. Flores, T. Lopetegi, M. A. G. Laso, F. Falcone, J. Bonache, J. García- García, F. Martín, J. A. Marcotegui, R. Marqués, and M. Sorolla, "Forward and backward leaky-wave radiation in split-ring-resonator-based metamaterials," IET Microw. Antennas Propag., Vol. 1, No. 1, 65, 2007.
doi:10.1049/iet-map:20050320 Google Scholar
11. Duk Jang, K., J. Hee Kim, D. Hyun Lee, and W. S. Park, "Compact resonant antenna based on composite right/left-handed transmission line with a magneto-dielectric material," Microw. Opt. Technol. Lett., Vol. 51, No. 8, 1994-1997, 2009.
doi:10.1002/mop.24490 Google Scholar
12. Kim, I. K., H.Wang, S. J.Weiss, and V. V. Varadan, "Embedded wideband metaresonator antenna on a high-impedance ground plane for vehicular applications," IEEE Trans. Veh. Technol., Vol. 61, No. 4, 1665-1672, 2012.
doi:10.1109/TVT.2012.2189254 Google Scholar
13. Yu, Z., S. Mo, and Z. Long, "A novel UWB SRR antenna," 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), 1486-1489, 2011. Google Scholar
14. Cumhur Basaran, S. and Y. E. Erdemli, "A dual-band split-ring monopole antenna for WLAN applications," Microw. Opt. Technol. Lett., Vol. 51, No. 11, 2685-2688, 2009.
doi:10.1002/mop.24708 Google Scholar
15. Cumhur Basaran, S., "A compact dual-wideband antenna based on complementary split-ring resonator," Microw. Opt. Technol. Lett., Vol. 54, No. 8, 1917-1920, 2012.
doi:10.1002/mop.26969 Google Scholar
16. Basaran, S. C. and K. Sertel, "Dual wideband CPW-fed monopole antenna with split-ring resonators," Microw. Opt. Technol. Lett., Vol. 55, No. 9, 2088-2092, 2013.
doi:10.1002/mop.27789 Google Scholar
17. Sehgal, P., K. Patel, and , "Dual-wideband CPW-fed monopole antenna with circular split-ring resonators," 7th International Conference on Signal Processing and Integrated Networks (SPIN), 1078-1083, Noida, India, 2020. Google Scholar
18. Saha, C., "On some studies with split ring resonators SRR of different geometrical shapes for metamaterial applications,", Ph.D. Thesis, University of Calcutta, India, 2012. Google Scholar
19. Naqui, J., M. Duran-Sindreu, and F. Martin, "Modeling split-ring resonator (SRR) and complementary split-ring resonator (CSRR) loaded transmission lines exhibiting cross-polarization effects," Antennas Wirel. Propag. Lett., Vol. 12, 178-181, 2013.
doi:10.1109/LAWP.2013.2245095 Google Scholar
20. Marwaha, A., "An accurate approach of mathematical modeling of SRR and SR for metamaterials," JESTR, Vol. 9, No. 6, 82-86, 2016.
doi:10.25103/jestr.096.11 Google Scholar
21. Sadiku, M. N. O., Elements of Electromagnetics, Oxford University Press, USA, 1995.