Vol. 117
Latest Volume
All Volumes
PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-12-29
MIMO Antenna for N48, N77, N78 5G Applications
By
Progress In Electromagnetics Research C, Vol. 117, 129-143, 2021
Abstract
This paper presents a MIMO antenna system composed of eight wideband horizontal dual-loop antenna elements. Each dual-loop antenna is printed on both sides of a smartphone board. The unit element antenna is designed to operate in the frequency range from 3.2 GHz to 5 GHz. The performance of the MIMO system is then analyzed. The performance of the obtained MIMO system in the frequency range from 3.2 GHz to 4.8 GHz is characterized by input reflection coefficient which is less than -6 dB for all antenna elements, and the isolation between the elements is larger than 15 dB. The total efficiency is greater than 55% over the entire band (3.2-4.8 GHz). Parameters of the multichannel antennas including envelope correlation coefficient (ECC), diversity gain (DG), and channel capacity loss (CLL) are analyzed to evaluate the performance of the MIMO system. The effect of the human hand and head on the performance of this MIMO antenna is also investigated. In addition, the effect of the radiated fields on the human body is also studied. The Specific Absorption Rate (SAR) value is found to be less than 0.8 W/kg. The MIMO system antenna is fabricated and measured. Good agreements are obtained between the simulated and measured parameters. The proposed MIMO system is applicable to the 5G N48, N77, and N78 bands.
Citation
Walaa M. Hassan Khalid Moustafa Ibrahim Ahmed Mohamed Attiya , "MIMO Antenna for N48, N77, N78 5G Applications," Progress In Electromagnetics Research C, Vol. 117, 129-143, 2021.
doi:10.2528/PIERC21092605
http://www.jpier.org/PIERC/pier.php?paper=21092605
References

1. Mak, K. M., H. W. Lai, K. M. Luk, and C. H. Chan, "Circularly polarized patch antenna for future 5G mobile phones," IEEE Access, Vol. 2, 1521-1529, Jan. 2015.

2. Al-Dulaimi, A., S. Al-Rubaye, Q. Ni, and E. Sousa, "5G communications race: Pursuit of more capacity triggers LTE in unlicensed band," IEEE Vehicular Technology Magazine, Vol. 10, No. 1, 43-51, Mar. 2015.
doi:10.1109/MVT.2014.2380631

3. Chen, X., S. Shoaib, I. Shoaib, N. Shoaib, and C. G. Parini, "MIMO antennas for mobile handsets," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 799-802, 2015.

4. Ban, Y.-L., C. Li, C.-Y.-D. Sim, G. Wu, and K.-L. Wong, "4G/5G multiple antennas for future multi-mode smartphone applications," IEEE Access, Vol. 4, 2981-2988, 2016.
doi:10.1109/ACCESS.2016.2582786

5. Li, M. Y., Z. Q. Xu, Y. L. Ban, C. Y. D. Sim, and Z. F. Yu, "Eight-port orthogonally dual-polarised MIMO antennas using loop structures for 5G smartphone," IET Microw., Antennas Propag., Vol. 11, 1810-1816, Dec. 2017.
doi:10.1049/iet-map.2017.0230

6. Li, M.-Y., et al., "Eight-port orthogonally dual-polarized antenna array for 5G smartphone applications," IEEE Trans. Antennas Propag., Vol. 64, No. 9, 3820-3830, Sep. 2016.
doi:10.1109/TAP.2016.2583501

7. Tsai, C.-Y., K.-L. Wong, and W.-Y. Li, "Experimental results of the multi-Gbps smartphone with 20 multi-input multi-output (MIMO) antennas in the 20-12 MIMO operation," Microw. Opt. Technol. Lett., Vol. 60, 20012010, Aug. 2018.

8. Wong, K.-L., C.-Y. Tsai, and J.-Y. Lu, "Two asymmetrically mirrored gap-coupled loop antennas as a compact building block for eight-antenna MIMO array in the future smartphone," IEEE Trans. Antennas Propag., Vol. 65, No. 4, 1765-1778, Apr. 2017.
doi:10.1109/TAP.2017.2670534

9. Deng, J. Y., J. Yao, D. Q. Sun, and L. X. Guo, "Ten-element MIMO antenna for 5G terminals," Microw. Opt. Technol. Lett., Vol. 60, 3045-3049, Dec. 2018.
doi:10.1002/mop.31404

10. Wong, K. L., B. W. Lin, and W.-Y. Li, "Dual-band dual inverted-F/loop antennas as a compact decoupled building block for forming eight 3.5/5.8-GHz MIMO antennas in the future smartphone," Microw. Opt. Technol. Lett., Vol. 59, 2715-2721, Nov. 2017.

11. Guo, J., L. Cui, C. Li, and B. Sun, "Side-edge frame printed eight-port dual-band antenna array for 5G smartphone applications," IEEE Trans. Antennas Propag., Vol. 66, 7412-7417, Dec. 2018.
doi:10.1109/TAP.2018.2872130

12. Li, Y., C. Y. D. Sim, Y. Luo, and G. Yang, "12-port 5G massive MIMO antenna array in sub-6 GHz mobile handset for LTE bands 42/43/46 applications," IEEE Access, Vol. 6, 344-354, Feb. 2018.
doi:10.1109/ACCESS.2017.2763161

13. Li, Y., C.-Y.-D. Sim, Y. Luo, and G. Yang, "Multiband 10-antenna array for sub-6 GHz MIMO applications in 5-G smartphones," IEEE Access, Vol. 6, 28041-28053, Jun. 2018.
doi:10.1109/ACCESS.2018.2838337

14. Xu, H., H. Zhou, S. Gao, H. Wang, and Y. Cheng, "Multimode decoupling technique with independent tuning characteristic for mobile terminals," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 6739-6751, Dec. 2017.
doi:10.1109/TAP.2017.2754445

15. Sun, L. B., H. Feng, Y. Li, and Z. Zhang, "Compact 5G MIMO mobile phone antennas with tightly arranged orthogonal-mode pairs," IEEE Trans. Antennas Propag., Vol. 66, No. 11, 6364-6369, Nov. 2018.
doi:10.1109/TAP.2018.2864674

16. Zhao, A. and Z. Ren, "Multiple-input and multiple-output antenna system with self-isolated antenna element for fth-generation mobile terminals," Microw. Opt. Technol. Lett., No. 61, 20-27, Jan. 2019.
doi:10.1002/mop.31515

17. Li, M.-Y., Y.-L. Ban, Z.-Q. Xu, J. Guo, and Z.-F. Yu, "Tri-polarized 12-antenna MIMO array for future 5G smartphone applications," IEEE Access, Vol. 6, 6160-6170, Jan. 2018.
doi:10.1109/ACCESS.2017.2781705

18. Zhao, A. and Z. Ren, "Size reduction of self-isolated MIMO antenna system for 5G mobile phone applications," IEEE Antennas Wireless Propag. Lett., Vol. 18, No. 1, 152-156, Jan. 2019.
doi:10.1109/LAWP.2018.2883428

19., , https://en.wikipedia.org/wiki/5G_NR_frequency_bands.
doi:10.1109/LAWP.2018.2883428

20. Sharawi, M. S., "Printed multi-band MIMO antenna systems and their performance metrics [wireless corner]," IEEE Antennas and propagation Magazine, Vol. 55, No. 5, 218-232, 2013.
doi:10.1109/MAP.2013.6735522

21. Khali, M., et al., "4-Port MIMO antenna with defected ground structure for 5G millimeter wave applications," Electronics, Vol. 9, 2020.

22., "IEEE standards for safety levels with request to human exposure to radiofrequency electromagnetic fields, 3 kHz to 300 GHz,", IEEE Std. C95.1, 1999.

23. ICNIRP (International Commission on Non-Ionizing Radiation Protection), "Guidelines for limiting exposure to time-varying electric magnetic, and electromagnetic fields (up to 300 GHz)," Health Phys., Vol. 74, 494-522, 1998.

24. Zou, H., Y. Li, C.-Y.-D. Sim, and G. Yang, "Design of 8_8 dual-band MIMO antenna array for 5G smartphone applications," Int. J. RF Microw. Comput. Aided Eng., Vol. 28, No. 9, Art. No. e21420, Nov. 2018.

25. Ban, Y. L., C. Li, C. Y. D. Sim, G. Wu, and K. L. Wong, "4G/5G multiple antennas for future multi-mode smartphone applications," IEEE Access, Vol. 4, 2981-2988, 2016.
doi:10.1109/ACCESS.2016.2582786

26. Wong, K. L., J. Y. Lu, L. Y. Chen, W. Y. Li, and Y. L. Ban, "8-antenna and 16-antenna arrays using the quad-antenna linear array as a building block for the 3.5-GHz LTE MIMO operation in the smart-phone," Microw Opt Technol Lett., Vol. 58, 174-18, 2016.
doi:10.1002/mop.29527

27. Wong, K. L., C. Y. Tsai, and J. Y. Lu, "Two asymmetrically mirrored gap-coupled loop antennas as a compact building block for eight-antenna MIMO array in the future smartphone," IEEE Trans. Antennas Propag., Vol. 65, 1765-1778, 2017.
doi:10.1109/TAP.2017.2670534

28. Guo, J. L., L. Cui, C. Li, and B. H. Sun, "Side-edge frame printed eight-port dual-band antenna array for 5G smartphone applications," IEEE Trans. Antennas Propag., Vol. 66, No. 12, 7412-7417, Dec. 2018.
doi:10.1109/TAP.2018.2872130

29. Cui, L., J. Guo, Y. Liu, and C.-Y.-D. Sim, "An 8-element dualband MIMO antenna with decoupling stub for 5G smartphone applications," IEEE Antennas Wireless Propag. Lett., Vol. 18, No. 10, 2095-2099, 2019.
doi:10.1109/LAWP.2019.2937851