1. Madhav, B. T. P., M. Manjeera, M. S. Navya, D. S. Devi, and V. Sumanth, "Novel metamaterial loaded multiband patch antenna," Indian J. Sci. Technol., Vol. 9, No. 38, 2016. Google Scholar
2. Khandelwal, M. K., B. K. Kanaujia, and S. Kumar, "Defected ground structure: Fundamentals, analysis, and applications in modern wireless trends," Int. J. Antennas Propag., Vol. 2017, 2017. Google Scholar
3. Ahsan, M. R., M. T. Islam, M. H. Ullah, R. W. Aldhaheri, and M. M. Sheikh, "A new design approach for dual-band patch antenna serving Ku/K band satellite communications," Int. J. Satell. Commun. Network, Vol. 34, 759-769, 2016.
doi:10.1002/sat.1130 Google Scholar
4. Ullah, M. H., M. T. Islam, M. R. Ahsan, J. S. Mandeep, and N. Misran, "A dual band slotted patch antenna on dielectric material substrate," Int. J. Antennas Propag., Vol. 2014, 2014. Google Scholar
5. Saini, G. S. and R. Kumar, "A low profile patch antenna for Ku-band applications," Int. J. Electron. Lett., Vol. 00, No. 00, 1-11, 2019. Google Scholar
6. Ahsan, M. R., M. T. Islam, and M. H. Ullah, "A simple design of planar microstrip antenna on composite material substrate for Ku/K band satellite applications," Int. J. Commun. Syst., Vol. 30, e2970, 2017.
doi:10.1002/dac.2970 Google Scholar
7. Da Silva, I. B. T., H. D. de Andrade, J. L. da Silva, H. C. C. Fernandes, and J. P. P. Pereira, "Design of microstrip patch antenna with complementary split ring resonator device for wideband systems application," Microw. Opt. Technol. Lett., Vol. 57, 1326-1330, 2015.
doi:10.1002/mop.29081 Google Scholar
8. Nakmouche, M. F., D. E. Fawzy, A. M. M. A. Allam, H. Taher, and M. F. A. Sree, "Dual band SIW patch antenna based on H-slotted DGS for Ku band application," 2020 7th Int. Conf. Electr. Electron. Eng. ICEEE 2020, 194-197, 2020. Google Scholar
9. Roy, S. and U. Chakraborty, "Metamaterial-embedded dual wideband microstrip antenna for 2.4 GHz WLAN and 8.2 GHz ITU band applications," Waves in Random and Complex Media, Vol. 30, No. 2, 193-207, 2020.
doi:10.1080/17455030.2018.1494396 Google Scholar
10. Zhang, H. T., G. Q. Luo, B. Yuan, and X. H. Zhang, "A novel ultra-wideband metamaterial antenna using chessboard-shaped patch," Microw. Opt. Technol. Lett., Vol. 58, 3008-3012, 2016.
doi:10.1002/mop.30200 Google Scholar
11. Rajak, N., N. Chattoraj, and R. Mark, "Metamaterial cell inspired high gain multiband antenna for wireless applications," AEU --- Int. J. Electron. Commun., Vol. 109, 23-30, 2019.
doi:10.1016/j.aeue.2019.07.003 Google Scholar
12. Singh, A. K., M. P. Abegaonkar, and S. K. Koul, "Miniaturized multiband microstrip patch antenna using metamaterial loading for wireless application," Progress In Electromagnetics Research C, Vol. 83, 71-82, 2018.
doi:10.2528/PIERC18012905 Google Scholar
13. Kumar, P., T. Ali, and M. M. M. Pai, "Electromagnetic metamaterials: A new paradigm of antenna design," IEEE Access, Vol. 9, 2021. Google Scholar
14. Shelby, R. A., D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, "Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial," Appl. Phys. Lett., Vol. 78, No. 4, 489-491, 2001.
doi:10.1063/1.1343489 Google Scholar
15. Liu, Y., X. Yang, Y. Jia, and Y. J. Guo, "A low correlation and mutual coupling MIMO antenna," IEEE Access, Vol. 7, 127384-127392, 2019.
doi:10.1109/ACCESS.2019.2939270 Google Scholar
16. Ozdemir, E., O. Akgol, F. O. Alkurt, M. Karaaslan, Y. I. Abdulkarim, and L. Deng, "Mutual coupling reduction of cross-dipole antenna for base stations by using a neural network approach," Appl. Sci., Vol. 10, No. 1, 2020.
doi:10.3390/app10010378 Google Scholar
17. Nakmouche, M. F., A. M. Allam, D. E. Fawzy, and D.-B. Lin, "Development of a high gain fss re ector backed monopole antenna using machine learning for 5G applications," Progress In Electromagnetics Research M, Vol. 105, 183-194, 2021.
doi:10.2528/PIERM21083103 Google Scholar
18. Khan, T. and C. Roy, "Prediction of slot-position and slot-size of a microstrip antenna using support vector regression," Int. J. RF Microw Comput. Aided Eng., 2019. Google Scholar
19. Kumar, R., P. Kumar, S. Singh, and R. Vijay, "Fast and accurate synthesis of frequency reconfigurable slot antenna using back propagation network," AEU --- Int. J. Electron. Commun., Vol. 112, 152962, 2019.
doi:10.1016/j.aeue.2019.152962 Google Scholar
20. Sabanci, K., A. Kayabasi, A. Toktas, and E. Yigit, "Notch antenna analysis: Artificial neural network-based operating frequency estimator," Appl. Comput. Electromagn. Soc. J., Vol. 32, No. 4, 303-309, 2017. Google Scholar
21. Aoad, A., "Design and manufacture of a multiband rectangular spiral-shaped microstrip antenna using EM-driven and machine learning," Elektron. ir Elektrotechnika, Vol. 27, No. 1, 29-40, 2021.
doi:10.5755/j02.eie.27583 Google Scholar
22. Nakmouche, M. F., A. M. M. A. Allam, D. E. Fawzy, D. B. Lin, M. Fathy, and A. Sree, "Development of H-slotted DGS based dual band antenna using ANN for 5G applications," 15th Eur. Conf. Antennas Propag. (EuCap), 2021. Google Scholar
23. Nakmouche, M. F., A. M. M. A. Allam, D. E. Fawzy, and D. B. Lin, "Low profile dual band H-slotted DGS based antenna design using ANN for K/Ku band applications," 2021 8th Int. Conf. Electr. Electron. Eng. ICEEE, 2021. Google Scholar
24. Bozzi, M., A. Georgiadis, and K. Wu, "Review of substrate-integrated waveguide circuits and antennas," IET Microwaves, Antennas Propag., Vol. 5, No. 8, 909-920, 2011.
doi:10.1049/iet-map.2010.0463 Google Scholar
25. Nakmouche, M. F., H. Taher, D. E. Fawzy, and G. Kahraman, "Parametric study of different shapes-slotted substrate integrated waveguide for wideband applications," Mediterr. Microw. Symp., 251-254, 2019. Google Scholar
26. Nakmouche, M. F., H. Taher, D. E. Fawzy, and A. M. M. A. Allam, "Development of a wideband substrate integrated waveguide bandpass filter using H-slotted DGS," Proceedings --- CAMA 2019: IEEE International Conference on Antenna Measurements and Applications, 2019. Google Scholar
27. Feng, S., L. Zhang, H. W. Yu, Y. X. Zhang, and Y. C. Jiao, "A single-layer wideband differential-fed microstrip patch antenna with complementary split-ring resonators loaded," IEEE Access, Vol. 7, 132041-132048, 2019.
doi:10.1109/ACCESS.2019.2940279 Google Scholar
28. Tao, L., et al. "Bandwidth enhancement of microstrip patch antenna using complementary rhombus resonator," Wirel. Commun. Mob. Comput., Vol. 2018, 2018. Google Scholar
29. Jilani, S. F. and A. Alomainy, "Millimetre-wave T-shaped MIMO antenna with defected ground structures for 5G cellular networks," IET Microwaves, Antennas Propag., Vol. 12, No. 5, 672-677, 2018.
doi:10.1049/iet-map.2017.0467 Google Scholar
30. Patel, R., A. Desai, T. Upadhyaya, T. K. Nguyen, H. Kaushal, and V. Dhasarathan, "Meandered low profile multiband antenna for wireless communication applications," Wirel. Networks, Vol. 27, No. 1, 1-12, 2021.
doi:10.1007/s11276-020-02437-6 Google Scholar
31. Gopi, D., A. R. Vadaboyina, and J. R. K. K. Dabbakuti, "DGS based monopole circular-shaped patch antenna for UWB applications," SN Appl. Sci., Vol. 3, No. 2, 2021.
doi:10.1007/s42452-020-04123-w Google Scholar
32. Salih, A. A. and M. S. Sharawi, "A dual-band highly miniaturized patch antenna," IEEE Antennas Wirel. Propag. Lett., Vol. 15, No. 12, 1783-1786, 2016.
doi:10.1109/LAWP.2016.2536678 Google Scholar
33. Xu, Z., Q. Zhang, and L. Guo, "A compact 5G decoupling MIMO antenna based on split-ring resonators," Int. J. Antennas Propag., Vol. 2019, 2019. Google Scholar
34. Nakmouche, M. F. and M. Nassim, "Impact of metamaterials DGS in PIFA antennas for IoT terminals design," Proceedings --- 2019 6th International Conference on Image and Signal Processing and their Applications, ISPA 2019, 2019. Google Scholar
35. Kumar, A., R. Patel, and M. V. Kartikeyan, "Investigation on microstrip filters with CSRR defected ground structure," Adv. Electromagn., Vol. 5, No. 2, 28-33, 2016.
doi:10.7716/aem.v5i2.353 Google Scholar
36. Balanis, C. A., Antenna Theory Analysis and Design, 3rd Ed., 2005.
37. Lokeshwar, B., D. Venkatasekhar, and A. Sudhakar, "Dual-band low profile siw cavity-backed antenna by using bilateral slots," Progress In Electromagnetics Research C, Vol. 100, 263-273, 2020.
doi:10.2528/PIERC20021201 Google Scholar
38. Lokeshwar, B., D. Venkatasekhar, and J. Ravindranadh, "Development of a low-profile broadband cavity backed bow-tie shaped slot antenna in SIW technology," Progress In Electromagnetics Research Letter, Vol. 100, 9-17, 2021.
doi:10.2528/PIERL21072404 Google Scholar