Vol. 116
Latest Volume
All Volumes
PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-11-08
A Dual-Beam Switchable Self-Oscillating Ku-Band Active Array Antenna Integrating Positive Feedback Type Push-Push Oscillator and PSK Modulator
By
Progress In Electromagnetics Research C, Vol. 116, 181-192, 2021
Abstract
This paper proposes a dual-beam switchable self-oscillating active integrated array antenna for Ku-band wireless power transfer systems. The oscillation is sourced by a positive feedback type Push-Push oscillator, which shows an excellent measured output power of +9.3 dBm obtained at the second harmonic frequency as well as good suppression of the undesired harmonics. The generated RF power from the oscillator excites four patch antenna elements. Moreover, a PSK modulator is adopted for binary phase switching between 0˚ and 180˚. Using in/anti-phase RF signal combination of the antenna elements, it is possible to switch between two beams, sum and difference radiation patterns. The proposed structure is fabricated and tested; the measured results verify the dual-beam switching concept with an effective isotropic radiated power (EIRP) of +17.77 dBm, DC-to-RF efficiency of 0.43%, and an oscillator figure of merit (FOM) of -158.05 dBc/Hz at the second harmonic frequency of 14.7 GHz.
Citation
Maodudul Hasan, Eisuke Nishiyama, Takayuki Tanaka, and Ichihiko Toyoda, "A Dual-Beam Switchable Self-Oscillating Ku-Band Active Array Antenna Integrating Positive Feedback Type Push-Push Oscillator and PSK Modulator," Progress In Electromagnetics Research C, Vol. 116, 181-192, 2021.
doi:10.2528/PIERC21092801
References

1. Chang, K., R. A. York, P. S. Hall, and T. Itoh, "Active integrated antennas," IEEE Trans. Microw. Theory Techn., Vol. 50, No. 3, 937-944, 2002.
doi:10.1109/22.989976        Google Scholar

2. Qian, Y. and T. Itoh, "Progress in active integrated antennas and their applications," IEEE Trans. Microw. Theory Techn., Vol. 46, No. 11, 1891-1900, 1998.
doi:10.1109/22.734506        Google Scholar

3. Toyoda, I., Y. Furukawa, E. Nishiyama, T. Tanaka, and M. Aikawa, "Polarization agile self-oscillating active integrated antenna for spatial modulation wireless communications," Electron Comm. Jpn., Vol. 101, No. 11, 37-44, 2018.
doi:10.1002/ecj.12123        Google Scholar

4. Hasan, M., E. Nishiyama, and I. Toyoda, "A polarization switchable active integrated array antenna with a single-lambda slot-ring Gunn oscillator and PSK modulator," IEICE Comm. Express, Vol. 8, No. 12, 560-565, 2019.
doi:10.1587/comex.2019GCL0044        Google Scholar

5.. Hasan, M., H. Ushiroda, E. Nishiyama, and I. Toyoda, "A polarization switchable active array antenna integrating a multiport oscillator and PSK modulators," Proc. 2018 Asia-Pacific Microw. Conf. (APMC 2018), 1253-1255, Kyoto, Japan, 2018.        Google Scholar

6. Hasan, M., E. Nishiyama, and I. Toyoda, "A microstrip-line Gunn oscillator loaded active integrated array antenna using inclined patches for polarization switching function," Proc. 2020 Int. Symp. Antennas Propag. (ISAP 2020), 797-798, Osaka, Japan (Virtual), 2021.        Google Scholar

7. Hasan, M., E. Nishiyama, and I. Toyoda, "A beam switchable self-oscillating active integrated array antenna using Gunn oscillator and magic-Ts," EICE Trans. Commun., Vol. E104-B, No. 11, 2021.        Google Scholar

8. Wu, C. and T. Ma, "Pattern-reconfigurable self-oscillating active integrated antenna with frequency agility," IEEE Trans. Antennas Propag., Vol. 62, No. 12, 5992-5999, 2014.
doi:10.1109/TAP.2014.2361897        Google Scholar

9. Singh, R. K., A. Basu, and S. K. Koul, "A novel pattern-reconfigurable oscillating active integrated antenna," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 3220-3223, 2017.
doi:10.1109/LAWP.2017.2769798        Google Scholar

10. Xiao, S., Z. Shao, and M. Fujise, "Pattern reconfigurable millimeter wave microstrip quasi-Yagi active antenna," Proc. 2005 Asia-Pacific Microw. Conf. (APMC 2005), Suzhou, China, 2005.        Google Scholar

11. Liu, Z., Y. Chang, and T. Ma, "High-efficiency self-oscillating active integrated antenna using metamaterial resonators and its application to multicarrier radio frequency identification systems," IEEE Trans. Antennas Propag., Vol. 64, No. 9, 3803-3810, 2016.
doi:10.1109/TAP.2016.2589959        Google Scholar

12. Minegishi, M., J. Lin, T. Itoh, and S. Kawasaki, "Control of mode-switching in an active antenna using MESFET," IEEE Trans. Microw. Theory Techn., Vol. 43, No. 8, 1869-1874, 1995.
doi:10.1109/22.402275        Google Scholar

13. Chew, S. T. and T. Itoh, "A 2 × 2 beam-switching active antenna array," Proc. 1995 IEEE MTT-S Int. Microw. Symp. Dig. (IMS 1995), Vol. 2, 925-928, Orlando, FL, USA, 1995.        Google Scholar

14. Singh, R. K., A. Basu, and S. K. Koul, "Reconfigurable oscillating active integrated antenna using two-element patch array for beam switching applications," Engineering Reports, Vol. 1, No. 7, e12071, 2019.        Google Scholar

15. Lin, J., T. Itoh, and S. Nogi, "Mode switch in a two-element active array," 1993 IEEE Antennas Propag. Soc. and Int. Symp. Dig. (AP-S 1993), 664-667, Ann Arbor, MI, USA, 1993.        Google Scholar

16. Hasan, M., E. Nishiyama, T. Tanaka, and I. Toyoda, "Design of dual-beam switchable self- oscillating active array antenna integrating positive feedback type Push-Push oscillator and PSK modulator," Proc. 2020 Int. Conf. Emerg. Tech. for Comm. (ICETC 2020), A4-A5, Japan (Virtual), 2020.        Google Scholar

17. Lin, Y. and T. Ma, "Frequency-reconfigurable self-oscillating active antenna with gap-loaded ring radiator," IEEE Antennas Wirel. Propag. Lett., Vol. 12, 337-340, 2013.
doi:10.1109/LAWP.2013.2250475        Google Scholar

18. Tanaka, T., H. Otani, and M. Aikawa, "Microwave transmitter module integrating slot array antenna, Push-Push oscillator and PSK modulator," Proc. 2010 Asia-Pacific Microw. Conf. (APMC 2010), 1023-1026, Yokohama, Japan, 2010.        Google Scholar

19. Lima, E., T. Tanaka, and I. Toyoda, "A novel low phase noise Push-Push oscillator employing dual-feedback sub-oscillators," Progress In Electromagnetics Research M, Vol. 75, 141-148, 2018.
doi:10.2528/PIERM18080701        Google Scholar

20. Dong, Y. and T. Itoh, "Planar ultra-wideband antennas in Ku- and K-band for pattern or polarization diversity applications," IEEE Trans. Antennas Propag., Vol. 60, No. 6, 2886-2895, 2012.
doi:10.1109/TAP.2012.2194680        Google Scholar

21. Kawahata, K., T. Tanaka, and M. Aikawa, "A K-band Push-Push oscillator with high suppression of undesired harmonic signals," IEICE Trans. Electron., Vol. E86-C, No. 8, 1433-1437, 2003.        Google Scholar

22. Shairi, N. A., B. H. Ahmad, and P. W. Wong, "Bandstop to allpass reconfigurable filter technique in SPDT switch design," Progress In Electromagnetics Research C, Vol. 39, 265-277, 2013.
doi:10.2528/PIERC13040313        Google Scholar

23. Balanis, C. A., Antenna Theory: Analysis and Design, 3rd Ed., John Wiley, Hoboken, NJ, 2005.