Vol. 117
Latest Volume
All Volumes
PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-12-21
Design and Analysis of Rectenna at 2.42 GHz for Wi-Fi Energy Harvesting
By
Progress In Electromagnetics Research C, Vol. 117, 89-98, 2021
Abstract
This work proposes a design of rectenna for Wi-Fi energy harvesting application at 2.42 GHz. The proposed antenna includes a modified rectangular patch and two circular radiating elements with partial ground, and adopts a total area of 80 × 80 mm2. With the partial ground structure, the proposed antenna shows a better reflection coefficient (S11) at 2.42 GHz. The proposed antenna is a modified conventional patch antenna that shows its improved suitability for Wi-Fi energy harvesting at the targeted band. For rectenna, an impedance matching circuit based on microstrip transmission lines, radial stubs, and enhanced Greinacher voltage doubler rectifier circuits are designed. The rectifier circuit occupies a total area of 25 × 25 mm2. The antenna part of the rectenna exhibits quite good S11 < -10 dB and 3.94 dB peak gain. To validate the design experimentally, a prototype of the proposed rectenna is also fabricated. The measured result indicates that at the resonant frequency the rectenna achieves the peak efficiency of 78.53%, and the output voltage is 4.7 V at 0 dBm input power.
Citation
Rashmi Pandey, Ashok Kumar Shankhwar, and Ashutosh Singh, "Design and Analysis of Rectenna at 2.42 GHz for Wi-Fi Energy Harvesting," Progress In Electromagnetics Research C, Vol. 117, 89-98, 2021.
doi:10.2528/PIERC21100409
References

1. Bizon, N., N. M. Tabatabaei, F. Blaabjerg, and E. Kurt, Energy Harvesting and Energy Efficiency: Technology, Methods, and Applications, Springer International Publishing, 2017.
doi:10.1007/978-3-319-49875-1

2. Castorina, G., L. Di Donato, A. F. Morabito, T. Isernia, and G. Sorbello, "Analysis and design of a concrete embedded antenna for wireless monitoring applications [Antenna applications corner]," IEEE Antennas and Propagation Magazine, Vol. 58, No. 6, 76-93, Dec. 2016.
doi:10.1109/MAP.2016.2609818        Google Scholar

3. Adam, I., M. Fareq Abd Malek, M. Najib Mohd Yasin, and H. A. Rahim, "Double band microwave rectifier for energy harvesting," Microw. Opt. Technol. Lett., Vol. 58, 922-927, 2016.
doi:10.1002/mop.29709        Google Scholar

4. McSpadden, J. O., L. Fan, and K. Chang, "Design and experiments of a high-conversion-efficiency 5.8-GHz rectenna," IEEE Transactions on Microwave Theory and Techniques, Vol. 46, No. 12, 2053-2060, Dec. 1998.
doi:10.1109/22.739282        Google Scholar

5. Tu, W., S. Hsu, and K. Chang, "Compact 5.8-GHz rectenna using stepped-impedance dipole antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 282-284, 2007.
doi:10.1109/LAWP.2007.898555        Google Scholar

6. Suh, Y.-H., C. Wang, and K. Chang, "Circular polarized truncated-corner square patch microstrip rectenna for wireless power transmission," Electron. Lett., Vol. 36, No. 7, 600-602, Mar. 2000.
doi:10.1049/el:20000527        Google Scholar

7. Yo, T.-C., C.-M. Lee, C.-M. Hsu, and C.-H. Luo, "Compact circularly polarized rectenna with unbalanced circular slots," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 3, 882-886, Mar. 2008.
doi:10.1109/TAP.2008.916956        Google Scholar

8. Harouni, Z., L. Cirio, L. Osman, A. Gharsallah, S. Member, and O. Picon, "A dual circularly polarized 2.45-GHz rectenna for wireless power transmission," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 306-309, 2011.
doi:10.1109/LAWP.2011.2141973        Google Scholar

9. Suh, Y.-H. and K. Chang, "A high-efficiency dual-frequency rectenna for 2.45 and 5.8-GHz wireless power transmission," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 7, 1784-1789, Jul. 2002.
doi:10.1109/TMTT.2002.800430        Google Scholar

10. Heikkinen, J. and M. Kivikoski, "A novel dual-frequency circularly polarized rectenna," IEEE Antennas and Wireless Propagation Letters, Vol. 2, 330-333, 2003.
doi:10.1109/LAWP.2004.824166        Google Scholar

11. Ren, Y.-J., M. F. Farooqui, and K. Chang, "A compact dual-frequency rectifying antenna with high-orders harmonic-rejection," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 7, 2110-2113, Jul. 2007.
doi:10.1109/TAP.2007.900275        Google Scholar

12. Xie, F., G. Yang, and W. Geyi, "Optimal design of an antenna array for energy harvesting," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 155-158, 2013.
doi:10.1109/LAWP.2013.2243697        Google Scholar

13. Chou, J. H., D. B. Lin, T. W. Hsiao, and H. T. Chou, "A compact shorted patch rectenna design with harmonic rejection properties for the applications of wireless power transmission," Microw. Opt. Technol. Lett., Vol. 58, 2250-2257, 2016.
doi:10.1002/mop.30012        Google Scholar

14. Chamanian, S., H. Ulusan, A. Koyuncuoglu, A. Muhtaroglu, and H. Kulah, "An adaptable interface circuit with multi-stage energy extraction for low power piezoelectric energy harvesting MEMS," IEEE Trans. Power Electron, Vol. 34, 2739-2747, 2019.
doi:10.1109/TPEL.2018.2841510        Google Scholar

15. Zhang, J. W., Y. Huang, and P. Cao, "An investigation of wideband rectennas for wireless energy harvesting," Wireless Eng. Technol., Vol. 5, 107-116, 2014.
doi:10.4236/wet.2014.54012        Google Scholar

16. Almoneef, T. S., F. Erkmen, M. A. Alotaibi, and O. M. Ramahi, "A new approach to microwave rectennas using tightly coupled antennas," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 4, 1714-1724, Apr. 2018, doi: 10.1109/TAP.2018.2806398.
doi:10.1109/TAP.2018.2806398        Google Scholar

17. Almoneef, T. S., "Design of a rectenna array without a matching network," IEEE Access, Vol. 8, 109071-109079, 2020, doi: 10.1109/ACCESS.2020.3001903.
doi:10.1109/ACCESS.2020.3001903        Google Scholar

18. Aldhaeebi, M. A. and T. S. Almoneef, "Highly efficient planar metasurface rectenna," IEEE Access, Vol. 8, 214019-214029, 2020, doi: 10.1109/ACCESS.2020.3041403.
doi:10.1109/ACCESS.2020.3041403        Google Scholar

19. Bait-Suwailam, M. M., T. S. Almoneef, and S. M. Saeed, "Flexible metamaterial electromagnetic harvester using modified split-ring resonator," Progress In Electromagnetics Research M, Vol. 95, 135-144, 2020.
doi:10.2528/PIERM20051407        Google Scholar

20. Alaukally, M. N. N., T. A. Elwi, and D. C. Atilla, "Miniaturized flexible metamaterial antenna of circularly polarized high gain-bandwidth product for radio frequency energy harvesting," Int. J. Commun. Syst., Vol. e5024, 2021, doi:10.1002/dac.5024.        Google Scholar

21. Abdulmjeed, A., T. A. Elwi, and S. Kurnaz, "Metamaterial Vivaldi printed circuit antenna based solar panel for self-powered wireless systems," Progress In Electromagnetics Research M, Vol. 102, 181-192, 2021.
doi:10.2528/PIERM21032406        Google Scholar

22. Hua, M. J., P. Wang, Y. Zheng, and S. L.Yuan, "Compact tri-band CPW-fed antenna for WLAN/WiMAX applications," Electron Lett., Vol. 49, 1118-1119, 2013.
doi:10.1049/el.2013.1669        Google Scholar

23. Sun, X. L., L. Liu, S. W. Cheung, and T. I. Yuk, "Dual-band antenna with compact radiator for 2.4/5.2/5.8 GHz WLAN applications," IEEE Transactions on Antennas and Propagation, Vol. 60, 5924-5931, 2012, https://doi.org/10.1109/TAP.2012.2211322.
doi:10.1109/TAP.2012.2211322        Google Scholar

24. Awais, Q., Y. Jin, H. T. Chattha, M. Jamil, H. Qiang, and B. A. Khawaja, "A compact rectenna system with high conversion efficiency for wireless energy harvesting," IEEE Access, Vol. 6, 35857-35866, 2018, https://doi.org/10.1109/ACCESS.2018.2848907.
doi:10.1109/ACCESS.2018.2848907        Google Scholar

25. Zhang, L., B. Chen, Y. C. Jiao, and Z. B. Weng, "Compact triple-band monopole antenna with two strips for WLAN/WiMAX applications," Microw. Opt. Technol. Lett., Vol. 54, 2650-2653, 2012.
doi:10.1002/mop.27154        Google Scholar

26. Kang, L., H. Wang, X. H. Wang, and X. Shi, "Compact ACS-fed monopole antenna with rectangular SRRs for tri-band operation," Electron. Lett., Vol. 50, 1112-1114, 2014, https://doi.org/10.1049/el.2014.1771.
doi:10.1049/el.2014.1771        Google Scholar

27. Chen, L., Y.-F. Liu, and X.-L. Ma, "Compact ACS-fed circular-arc-shaped stepped monopole antenna for tri-band WLAN/WIMAX applications," Progress In Electromagnetics Research C, Vol. 51, 131-137, 2014.
doi:10.2528/PIERC14051206        Google Scholar

28. Kumar, A., P. Naidu, V. Kumar, and A. K. Ramasamy, "Design & development of compact uniplanar semi-hexagonal ACS-fed multi-band antenna for portable system application," Progress In Electromagnetics Research M, Vol. 60, 157-167, 2017.
doi:10.2528/PIERM17080302        Google Scholar

29. Agrawal, S., M. S. Parihar, and P. N. Kondekar, "A quad-band antenna for multi-band radio frequency energy harvesting circuit," AEU --- International Journal of Electronics and Communications, Vol. 85, 99-107, 2018, ISSN 1434-8411.
doi:10.1016/j.aeue.2017.12.035        Google Scholar

30. Tafekirt, H., J. Pelegri-Sebastia, A. Bouajaj, and B. M. Reda, "A sensitive triple-band rectifier for energy harvesting applications," IEEE Access, Vol. 8, 73659-73664, 2020, doi: 10.1109/ACCESS.2020.2986797.
doi:10.1109/ACCESS.2020.2986797        Google Scholar

31. Mansour, M. M. and H. Kanaya, "Efficiency-enhancement of 2.45-GHz energy harvesting circuit using integrated CPW-MS structure at low RF input power," IEICE Transactions on Electronics, Vol. E102C, No. 5, 399-407, 2019.
doi:10.1587/transele.2018ECP5065        Google Scholar

32. Chuma, E. L., L. D. L. T. Rodrguez, Y. Iano, L. L. B. Roger, and M. Sanchez-Soriano, "Compact rectenna based on a fractal geometry with a high conversion energy efficiency per area," IET Microw., Antennas Propag, Vol. 12, No. 2, 173-178, Feb. 2018, doi: 10.1049/ietmap.2016.1150.
doi:10.1049/iet-map.2016.1150        Google Scholar

33. Koohestani, M., J. Tissier, and M. Latrach, "A miniaturized printed rectenna for wireless RF energy harvesting around 2.45 GHz," AEU --- International Journal of Electronics and Communications, Vol. 127, 153478, 2020, ISSN 1434-8411, https://doi.org/10.1016/j.aeue.2020.153478.
doi:10.1016/j.aeue.2020.153478        Google Scholar

34. Awais, Q., Y. Jin, H. T. Chattha, M. Jamil, H. Qiang, and B. A. Khawaja, "A compact rectenna system with high conversion efficiency for wireless energy harvesting," IEEE Access, Vol. 6, 35857-35866, 2018, doi: 10.1109/ACCESS.2018.2848907.
doi:10.1109/ACCESS.2018.2848907        Google Scholar

35. Divakaran, S., D. Krishna, Nasimuddin, and J. K. Antony, "Dual-band multi-port rectenna for RF energy harvesting," Progress In Electromagnetics Research C, Vol. 107, 17-31, 2021.
doi:10.2528/PIERC20100802        Google Scholar

36. Balanis, C. A., Antenna Theory: Analysis and Design, 2nd Ed., 86, Wiley, New York, 1997.