Vol. 118
Latest Volume
All Volumes
PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-01-26
Wide-Band Frequency Tunable Antenna for 4G, 5G/Sub 6 GHz Portable Devices and MIMO Applications
By
Progress In Electromagnetics Research C, Vol. 118, 25-41, 2022
Abstract
A compact (25×28×1.57 mm3) and wide-band multimode frequency tunable antenna with defected ground structure (FRDGS) for 4G and 5G conformal portable devices and multi-band wireless systems is presented in this article. In a previous study, frequency reconfigurable antenna designs only used the method of adding slots on the patch or ground. In this study, a combination of multiple slots, partial ground, and defective ground structure techniques were utilised to attain the advantages of compactness, wide impedance bandwidth, and steady radiation pattern. Multiple slots on the top layer of the substrate and F-shaped slot etched at the bottom makes the proposed antenna. Two PIN diodes are inserted in the F-shaped slot for frequency reconfiguration, allowing the antenna to switch between different resonances. Ansys high frequency structure simulator 15.0v is used to simulate the antenna parameters. This antenna performance is demonstrated using measured and simulated data. The simulated and measured results clearly show that the proposed antenna can switch between six dissimilar resonant frequency bands via various modes of operation across the frequency spectrum from 2.3 to 8.9 GHz. The antenna works in a variety of commercial bands, such as WLAN/Bluetooth (2.4-2.5 GHz), LTE/4G (2.3-2.7 GHz), S-band (2-4 GHz), Radio Navigation (2.7-2.9 GHz), and 5G/sub-6 (3.3-4.9 GHz), according to simulations and experiments. The proposed design features narrowband, wideband, and ultra-wideband properties with a consistent radiation pattern, adequate gain (1.6 to 5.8 dB), and high radiation efficiency (86 to 94%) in a small package. Furthermore, the performance comparison of the proposed antenna with that of the state-of-the-art antennas in terms of compactness, frequency reconfigurability, number of operating bands, and impedance bandwidth demonstrates the novelty of the proposed antenna and its potential application in multiple wireless applications.
Citation
Shivleela Mudda, K. M. Gayathri, and Mudda Mallikarjun, "Wide-Band Frequency Tunable Antenna for 4G, 5G/Sub 6 GHz Portable Devices and MIMO Applications," Progress In Electromagnetics Research C, Vol. 118, 25-41, 2022.
doi:10.2528/PIERC21112902
References

1. Li, T., Y. Dong, P. Fan, and K. B. Letaief, "Wireless communications with RF-based energy harvesting: From information theory to green systems," IEEE Access, Vol. 5, 27538-27550, 2017.
doi:10.1109/ACCESS.2017.2777905        Google Scholar

2. Guo, Y. J., P.-Y. Qin, S. L. Chen, W. Lin, and R. W. Ziolkowski, "Advances in recon gurable antenna systems facilitated by innovative technologies," IEEE Access, Vol. 6, 5780-5794, 2018.
doi:10.1109/ACCESS.2017.2789199        Google Scholar

3. Khaleel, H., Innovation in Wearable and Flexible Antennas, Wit Press, Boston, MA, USA, 2014.

4. Awan, W. A., N. Hussain, and T. T. Le, "Ultra-thin exible fractal antenna for 2.45 GHz application with wideband harmonic rejection," AEU-Int. J. Electron Commun., Vol. 110, Oct. 2019, Art. no. 152851.        Google Scholar

5., Global update on 5G spectrum (2019). https://www.qualcomm.com/media/documents/ les/spectrum-for-4g-and-5g.pdf.

6. Mudda, S. and K. M. Gayathri, "Frequency recon gurable ultra-wide band MIMO antenna for 4G/5G portable devices applications: Review," International Journal on Emerging Technologies, Vol. 11, No. 3, 486-490, 2020.        Google Scholar

7. Li, Y., W. Li, and Q. Ye, "A recon gurable triple-notch-band antenna integrated with defected microstrip structure band-stop lter for ultra-wideband cognitive radio applications," International Journal of Antennas and Propagation, 2013.        Google Scholar

8. Gheethan, A. E. and D. E. Anagnostou, "Broadband and dual-band coplanar folded-slot antennas (CFSAs) [Antenna designer's notebook]," IEEE Antennas Propag. Mag., Vol. 53, No. 1, 80-89, 2011.
doi:10.1109/MAP.2011.5773572        Google Scholar

9. Balanis, C. A., Antenna Theory: Analysis and Design, 3rd Edition, Wiley, Hoboken, 2005.

10. Mudda, S., K. M. Gayathri, and M. Mudda, "Compact high gain microstrip patch multi- band antenna for future generation portable devices communication," 2021 International Conference on Emerging Smart Computing and Informatics (ESCI), 471-476, 2021, doi: 10.1109/ESCI50559.2021.9396776.
doi:10.1109/ESCI50559.2021.9396776        Google Scholar

11. Shynu, S. V., G. Augustin, C. K. Aanandan, P. Mohanan, and K. Vasudevan, "A recon gurable dual frequency slot-loaded microstrip antenna controlled by PIN diodes," Microwave Optical Technology Letters, Vol. 44, 374-376, 2005.        Google Scholar

12. Jin, G., C. Deng, J. Yang, Y. Xu, and S. Liao, "A new differentially-fed frequency recon gurable antenna for WLAN and sub-6 GHz 5G applications," IEEE Access, Vol. 7, 56539-56546, 2019.
doi:10.1109/ACCESS.2019.2901760        Google Scholar

13. Khan, M. F., S. A. Shah, and S. Ullah, "Dual-band frequency recon gurable microstrip patch antenna on the wearable substrate for Wi-Fi and Wi-MAX applications," Technical Journal, Vol. 22, 35-40, University of Engineering and Technology, Taxila, Pakistan, 2017.        Google Scholar

14. Xin, G. L. and J. P. Xu, "Wideband miniature G-shaped antenna for dual-band WLAN applications," Electronics Letters, Vol. 43, No. 24, 1330-1332, Nov. 22, 2007.
doi:10.1049/el:20072520        Google Scholar

15. Jin, G. P., D. L. Zhang, and R. L. Li, "Optically controlled recon gurable antenna for cognitive radio applications," Electronics Letters, Vol. 47, No. 17, 948-950, Aug. 18, 2011.
doi:10.1049/el.2011.1958        Google Scholar

16. Rajagopalan, H., J. M. Kovitz, and Y. Rahmat Samii, "MEMS recon gurable optimized E-shaped patch antenna design for cognitive radio," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 3, 1056-1064, 2014.
doi:10.1109/TAP.2013.2292531        Google Scholar

17. Chaouche, Y. B., I. Messaoudene, I. Benmabrouk, M. Nedil, and F. Bouttout, "Compact coplanar waveguide-fed recon gurable fractal antenna for switchable multiband systems," IET Microw. Antennas Propag., Vol. 13, 1-8, 2018.        Google Scholar

18. Sathikbasha, M. J. and V. Nagarajan, "DGS based multiband frequency reconfigurable antenna for wireless applications," International Conference on Commun. and Signal Processing (ICCSP), 0908-0912, 2019, doi: 10.1109/ICCSP.2019.8698093.        Google Scholar

19. Abdulraheem, Y. I., G. A. Oguntala, A. S. Abdullah, H. J. Mohammed, R. A. Ali, R. A. Abd- Alhameed, and J. M. Noras, "Design offrequency recon gurable multiband compact antenna using two PIN diodes for WLAN/WiMAX applications," IET Microw. Antennas Propag., Vol. 11, 1098-1105, 2017.
doi:10.1049/iet-map.2016.0814        Google Scholar

20. Ali, T., M. M. Khaleeq, and R. C. Biradar, "A multiband recon gurable slot antenna for wireless applications," AEU Int. J. Electron. Commun., Vol. 84, 273-280, 2018.
doi:10.1016/j.aeue.2017.11.033        Google Scholar

21. Han, L., C.Wang, W. Zhang, R. Ma, and Q. Zeng, "Design of frequency- and pattern-recon gurable wideband slot antenna," International Journal of Antennas and Propagation, Vol. 2018, Article ID 3678018, 7 pages, 2018, https://doi.org/10.1155/2018/3678018.        Google Scholar

22. Ahmad, A., F. Arshad, S. I. Naqvi, Y. Amin, H. Tenhunen, and J. Loo, "Flexible and compact spiral-shaped frequency recon gurable antenna for wireless applications," IETE Journal of Research, 2018, doi: 10.1080/03772063.2018.1477629.        Google Scholar

23. Shah, I. A., S. Hayat, A. Basir, M. Zada, S. A. A. Shah, and S. Ullah, "Design and analysis of a hexa-band frequency recon gurable antenna for wireless communication," International Journal of Electronics and Communications, 2018, doi: https://doi.org/10.1016/j.aeue.2018.10.012.        Google Scholar

24. Dildar, H., F. Althobiani, I. Ahmad, W. U. R. Khan, S. Ullah, N. Mufti, S. Ullah, F. Muhammad, M. Irfan, and A. Glowacz, "A design and experimental analysis of multiband frequency recon gurable antenna for 5G and sub-6 GHz wireless communication," Micromachines, Vol. 12, 32, 2021, https://doi.org/10.3390/mi12010032.        Google Scholar

25. Khan, T. and M. U. Rahman, "Design of low-pro le frequency reconfigurable antenna for multiband applications," International Journal of Electronics Letters, 2021, doi: 10.1080/21681724.2020.1818836.        Google Scholar

26. Ghaffar, A., X. J. Li, W. A. Awan, S. Iffat Naqvi, N. Hussain, B.-C. Seet, M. Alibakhshikenari, F. Falcone, and E. Limiti, "Design and realization of a frequency recon gurable multimode antenna for ISM, 5G-sub-6-GHz, and S-band applications," Appl. Sci., Vol. 11, 1635, 2021, https://doi.org/10.3390/app11041635.
doi:10.3390/app11041635        Google Scholar

27. Saikia, B., P. Dutta, and K. Borah, "Design of a frequency recon gurable microstrip patch antenna for multiband applications," Proceedings of the 5th International Conference on Computers & Management Skills (ICCM 2019), Arunachal Pradesh, India, Dec. 15{16, 2019.        Google Scholar

28. Ulla, S., S. Hayat, A. Umar, A. Ali, and J. A. Flint, "Design, fabrication, and measurement of triple-band frequency recon gurable antennas for portable wireless communications," AEU-Int. J. Electron. Commun., Vol. 81, 236-242, 2017.
doi:10.1016/j.aeue.2017.07.028        Google Scholar

29. Iqbal, A., S. Ullah, U. Naeem, A. Basir, and U. Ali, "Design, fabrication, and measurement of a compact frequency recon gurable modi ed T-shape planar antenna for portable applications," J. Electr. Eng. Technol., Vol. 12, 1611-1618, 2017.        Google Scholar

30. Ullah, S., I. Ahmad, Y. Raheem, S. Ullah, T. Ahmad, and U. Habib, "Hexagonal shaped CPW feed based frequency recon gurable antenna for WLAN and sub-6 GHz 5G applications," Proceedings of the International Conference on Emerging Trends in Smart Technologies (ICETST), Karachi, Pakistan, Mar. 26{27, 2020; IEEE, Piscataway, NJ, USA, 2020.        Google Scholar

31. Shah, I. A., S. Hayat, I. Khan, I. Alam, S. Ullah, and A. Afridi, "A compact tri-band and 9-shape recon gurable antenna for WiFi WiMAX and WLAN applications," Int. J. Wirel. Microw. Technol. (IJWMT), Vol. 6, 45-53, 2016.        Google Scholar

32. Ullah, S., A. Shaheen, B. A. Khan, and J. A. Flint, "A multi-band switchable antenna for Wi-Fi, 3G advanced, WiMAX, and WLAN wireless applications," Int. J. Microw. Wirel. Technol., Vol. 10, 991-997, 2018.
doi:10.1017/S1759078718000776        Google Scholar

33. Shah, S. A., M. F. Khan, S. Ullah, A. Basir, U. Ali, and U. Naeem, "Design and measurement of planar monopole antennas for multiband wireless applications," IETE J. Res., Vol. 63, 194-204, 2017.
doi:10.1080/03772063.2016.1261049        Google Scholar

34. Dildar, H., F. Althobiani, W. U. R. Ahmad Khan, S. Ullah, N. Mufti, S. Ullah, F. Muhammad, M. Irfan, and A. Glowacz, "Design and experimental analysis of multiband frequency recon gurable antenna for 5G and sub-6 GHz wireless communication," Micromachines, Vol. 12, 32, 2021, https://doi.org/10.3390/mi12010032.        Google Scholar