1. Zhen, Y. X., G. Xu, and R. Li, "A new fault-impedance algorithm for distance relaying on a transmission line," IEEE Trans. Power Del., Vol. 15, No. 2, 2328-2338, 2010. Google Scholar
2. Magnago, F. H., "Fault location using wavelets," IEEE Trans. Power Del., Vol. 13, No. 2, 1475-1480, 1998.
doi:10.1109/61.714808 Google Scholar
3. Shu, H. C., X. H. Liu, and X. C. Tian, "Single-ended fault location for hybrid feeders based on characteristic distribution of traveling wave along a line," IEEE Trans. Power Del., Vol. 36, No. 1, 339-350, 2021.
doi:10.1109/TPWRD.2020.2976691 Google Scholar
4. Girgis, A., D. Hart, and W. Peterson, "A new fault location technique for two- and three-terminal lines," IEEE Trans. Power Del., Vol. 7, No. 3, 98-107, 1992.
doi:10.1109/61.108895 Google Scholar
5. Cozza, A. and Y. Z. Xie, "Surge compression for improved fault location accuracy in full transient-based methods," IEEE Sensors Journal, Vol. 21, No. 2, 995-1008, 2021.
doi:10.1109/JSEN.2020.2989202 Google Scholar
6. Rui, F., Y. Liu, R. S. Diao, and S. B. Wang, "Precise fault location on transmission lines using ensemble Kalman filter," IEEE Trans. Power Del., Vol. 33, No. 4, 3252-3256, 2018. Google Scholar
7. Kumar, A. N., C. Sanjay, and M. Chakravarthy, "Fuzzy inference system-based solution to locate the cross-country faults in parallel transmission line," International Journal of Electrical Engineering Education, Vol. 58, No. 1, 83-96, 2021.
doi:10.1177/0020720919830905 Google Scholar
8. Kang, N. and J. X. Chen, "A fault-location algorithm for series-compensated double-circuit transmission lines using the distributed parameter line model," IEEE Trans. Power Del., Vol. 32, No. 3, 2398-2407, 2017. Google Scholar
9. Gopalakrishnan, D., M. Hamai, and S. McKenna, "Fault location using the distributed parameter transmission line model," IEEE Trans. Power Del., Vol. 15, No. 8, 1169-1174, 2000.
doi:10.1109/61.891498 Google Scholar
10. Karcius, M., K. M. Dantas, K. M. Silva, and K. M. Flavio, "Accurate two-terminal transmission line fault location using traveling waves," IEEE Trans. Power Del., Vol. 33, No. 3, 873-880, 2018. Google Scholar
11. Kezunovic, M. and B. Perunicic, "Automated transmission line fault analysis using synchronized sampling at two ends," IEEE Trans. Power Del., Vol. 11, No. 5, 121-129, 1988. Google Scholar
12. Ghorbani, A. and H. Mehrjerdi, "Negative-sequence network based fault location scheme for double-circuit multi-terminal transmission lines," IEEE Trans. Power Del., Vol. 34, No. 3, 1109-1117, 2019.
doi:10.1109/TPWRD.2019.2906056 Google Scholar
13. Dobakhshari, A. S. and M. Ranjbar, "A novel method for fault location of transmission lines by wide-area voltage measurements considering measurement errors," IEEE Trans. Smart Grid, Vol. 6, No. 5, 874-884, 2015.
doi:10.1109/TSG.2014.2322977 Google Scholar
14. Dobakhshari, A. S., "Wide-area fault location of transmission lines by hybrid synchronized/unsynchronized voltage measurements," IEEE Trans. Smart Grid, Vol. 9, No. 3, 186-192, 2018. Google Scholar
15. Azizi, S. and S. M. Pasand, "Fault location on multiterminal DC systems using synchronized current measurements," Int. J. Elect. Power Energy Syst., Vol. 64, 779-786, 2014.
doi:10.1016/j.ijepes.2014.06.040 Google Scholar
16. Zhang, C. H., G. B. Song, and L. M. Yang, "Time-domain single-ended fault location method that does not need remote-end system information," IET Generation Transmission & Distribution, Vol. 14, No. 2, 284-293, 2020.
doi:10.1049/iet-gtd.2019.0647 Google Scholar
17. Preston, G., M. Radojevic, H. Kim, and V. Terzija, "New settings-free fault location algorithm based on synchronized sampling," IET Generation Transmission & Distribution, Vol. 5, No. 2, 376-383, 2011.
doi:10.1049/iet-gtd.2010.0053 Google Scholar
18. Jiang, J. A., Y. H. Lin, C. W. Liu, and J. C. Ma, "An adaptive PMU based fault detection/location technique for transmission lines. Part I: Theory and algorithms," IEEE Trans. Power Del., Vol. 15, No. 3, 486-493, 2000.
doi:10.1109/61.852973 Google Scholar
19. Liao, Y., "Fault location for single-circuit line based on bus-impedance matrix utilizing voltage measurements," IEEE Trans. Power Del., Vol. 23, No. 5, 609-617, 2008.
doi:10.1109/TPWRD.2008.915799 Google Scholar
20. Yu, C. S., C. W. Liu, and S. L. Yu, "A new PMU-based fault location algorithm for series compensated lines," IEEE Trans. Power Del., Vol. 17, No. 2, 33-46, 2002. Google Scholar
21. Liao, Y. and S. Elangovan, "Unsynchronized two-terminal transmission line fault-location without using line parameters," IEE Proc. Gener. Transmiss. Distrib., Vol. 153, 639-643, 2006.
doi:10.1049/ip-gtd:20060026 Google Scholar
22. Feng, G. and A. Abur, "Fault location using wide-area measurements and sparse estimation," IEEE Trans. Power Syst., Vol. 31, No. 4, 2938-2945, 2016.
doi:10.1109/TPWRS.2015.2469606 Google Scholar
23. Zhao, L. H., J. W. Zhu, and B. Gu, "A new technique based on fundamental frequency positive sequence fault components for fault location," IEEJ Transactions on Electrical and Electronic Engineering, Vol. 15, 536-543, 2020.
doi:10.1002/tee.23086 Google Scholar
24. Zhang, Y., J. Liang, Z. Yun, and X. M. Dong, "A new fault-location algorithm for series-compensated double-circuit transmission lines based on the distributed parameter model," IEEE Trans. Power Del., Vol. 33, No. 2, 3249-3251, 2018. Google Scholar
25. Liao, Y., "Transmission line fault location algorithms without requiring line parameters," Elect. Power Compon. Syst., Vol. 11, No. 11, 1218-1225, 2008.
doi:10.1080/15325000802084711 Google Scholar
26., IEEE Guide for Determining Fault Location on AC Transmission and Distribution Lines, IEEE Standard C37.114TM-2004, 2005.
doi:10.1080/15325000802084711 Google Scholar