Vol. 119
Latest Volume
All Volumes
PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-03-09
A New Fault Location Method Independent of Line Parameters
By
Progress In Electromagnetics Research C, Vol. 119, 31-47, 2022
Abstract
To restore power feeding as soon as possible and reduce repair costs and labor, a precise and robust fault location method for transmission lines is proposed. This method is based on the current and voltage synchronously collected by the phasor measurement units (PMUs) at two terminals of the line and does not require line parameters to calculate the fault distance. The line parameter is not approximately constant, but is affected by power load, temperature, and humidity, which affects the accuracy of most fault location algorithms that rely on line parameters. Therefore, the method proposed in this paper is robust and accurate. The method is based on the sequence fault component network and synchronous measurement technology, which is not affected by the system's pre-fault state, fault type, fault inception angle, and fault phase. Then, the method is verified in PSCAD/EMTDC by choosing different path resistances, fault types, fault inception angles, load currents, and line transpositions. A large number of simulation results show that the proposed method has high accuracy and robustness.
Citation
Lihui Zhao Jingwei Zhu Hongzhe Yang Bin Gu , "A New Fault Location Method Independent of Line Parameters," Progress In Electromagnetics Research C, Vol. 119, 31-47, 2022.
doi:10.2528/PIERC22011101
http://www.jpier.org/PIERC/pier.php?paper=22011101
References

1. Zhen, Y. X., G. Xu, and R. Li, "A new fault-impedance algorithm for distance relaying on a transmission line," IEEE Trans. Power Del., Vol. 15, No. 2, 2328-2338, 2010.

2. Magnago, F. H., "Fault location using wavelets," IEEE Trans. Power Del., Vol. 13, No. 2, 1475-1480, 1998.
doi:10.1109/61.714808

3. Shu, H. C., X. H. Liu, and X. C. Tian, "Single-ended fault location for hybrid feeders based on characteristic distribution of traveling wave along a line," IEEE Trans. Power Del., Vol. 36, No. 1, 339-350, 2021.
doi:10.1109/TPWRD.2020.2976691

4. Girgis, A., D. Hart, and W. Peterson, "A new fault location technique for two- and three-terminal lines," IEEE Trans. Power Del., Vol. 7, No. 3, 98-107, 1992.
doi:10.1109/61.108895

5. Cozza, A. and Y. Z. Xie, "Surge compression for improved fault location accuracy in full transient-based methods," IEEE Sensors Journal, Vol. 21, No. 2, 995-1008, 2021.
doi:10.1109/JSEN.2020.2989202

6. Rui, F., Y. Liu, R. S. Diao, and S. B. Wang, "Precise fault location on transmission lines using ensemble Kalman filter," IEEE Trans. Power Del., Vol. 33, No. 4, 3252-3256, 2018.

7. Kumar, A. N., C. Sanjay, and M. Chakravarthy, "Fuzzy inference system-based solution to locate the cross-country faults in parallel transmission line," International Journal of Electrical Engineering Education, Vol. 58, No. 1, 83-96, 2021.
doi:10.1177/0020720919830905

8. Kang, N. and J. X. Chen, "A fault-location algorithm for series-compensated double-circuit transmission lines using the distributed parameter line model," IEEE Trans. Power Del., Vol. 32, No. 3, 2398-2407, 2017.

9. Gopalakrishnan, D., M. Hamai, and S. McKenna, "Fault location using the distributed parameter transmission line model," IEEE Trans. Power Del., Vol. 15, No. 8, 1169-1174, 2000.
doi:10.1109/61.891498

10. Karcius, M., K. M. Dantas, K. M. Silva, and K. M. Flavio, "Accurate two-terminal transmission line fault location using traveling waves," IEEE Trans. Power Del., Vol. 33, No. 3, 873-880, 2018.

11. Kezunovic, M. and B. Perunicic, "Automated transmission line fault analysis using synchronized sampling at two ends," IEEE Trans. Power Del., Vol. 11, No. 5, 121-129, 1988.

12. Ghorbani, A. and H. Mehrjerdi, "Negative-sequence network based fault location scheme for double-circuit multi-terminal transmission lines," IEEE Trans. Power Del., Vol. 34, No. 3, 1109-1117, 2019.
doi:10.1109/TPWRD.2019.2906056

13. Dobakhshari, A. S. and M. Ranjbar, "A novel method for fault location of transmission lines by wide-area voltage measurements considering measurement errors," IEEE Trans. Smart Grid, Vol. 6, No. 5, 874-884, 2015.
doi:10.1109/TSG.2014.2322977

14. Dobakhshari, A. S., "Wide-area fault location of transmission lines by hybrid synchronized/unsynchronized voltage measurements," IEEE Trans. Smart Grid, Vol. 9, No. 3, 186-192, 2018.

15. Azizi, S. and S. M. Pasand, "Fault location on multiterminal DC systems using synchronized current measurements," Int. J. Elect. Power Energy Syst., Vol. 64, 779-786, 2014.
doi:10.1016/j.ijepes.2014.06.040

16. Zhang, C. H., G. B. Song, and L. M. Yang, "Time-domain single-ended fault location method that does not need remote-end system information," IET Generation Transmission & Distribution, Vol. 14, No. 2, 284-293, 2020.
doi:10.1049/iet-gtd.2019.0647

17. Preston, G., M. Radojevic, H. Kim, and V. Terzija, "New settings-free fault location algorithm based on synchronized sampling," IET Generation Transmission & Distribution, Vol. 5, No. 2, 376-383, 2011.
doi:10.1049/iet-gtd.2010.0053

18. Jiang, J. A., Y. H. Lin, C. W. Liu, and J. C. Ma, "An adaptive PMU based fault detection/location technique for transmission lines. Part I: Theory and algorithms," IEEE Trans. Power Del., Vol. 15, No. 3, 486-493, 2000.
doi:10.1109/61.852973

19. Liao, Y., "Fault location for single-circuit line based on bus-impedance matrix utilizing voltage measurements," IEEE Trans. Power Del., Vol. 23, No. 5, 609-617, 2008.
doi:10.1109/TPWRD.2008.915799

20. Yu, C. S., C. W. Liu, and S. L. Yu, "A new PMU-based fault location algorithm for series compensated lines," IEEE Trans. Power Del., Vol. 17, No. 2, 33-46, 2002.

21. Liao, Y. and S. Elangovan, "Unsynchronized two-terminal transmission line fault-location without using line parameters," IEE Proc. Gener. Transmiss. Distrib., Vol. 153, 639-643, 2006.
doi:10.1049/ip-gtd:20060026

22. Feng, G. and A. Abur, "Fault location using wide-area measurements and sparse estimation," IEEE Trans. Power Syst., Vol. 31, No. 4, 2938-2945, 2016.
doi:10.1109/TPWRS.2015.2469606

23. Zhao, L. H., J. W. Zhu, and B. Gu, "A new technique based on fundamental frequency positive sequence fault components for fault location," IEEJ Transactions on Electrical and Electronic Engineering, Vol. 15, 536-543, 2020.
doi:10.1002/tee.23086

24. Zhang, Y., J. Liang, Z. Yun, and X. M. Dong, "A new fault-location algorithm for series-compensated double-circuit transmission lines based on the distributed parameter model," IEEE Trans. Power Del., Vol. 33, No. 2, 3249-3251, 2018.

25. Liao, Y., "Transmission line fault location algorithms without requiring line parameters," Elect. Power Compon. Syst., Vol. 11, No. 11, 1218-1225, 2008.
doi:10.1080/15325000802084711

26., , IEEE Guide for Determining Fault Location on AC Transmission and Distribution Lines, IEEE Standard C37.114TM-2004, 2005.
doi:10.1080/15325000802084711