Vol. 118
Latest Volume
All Volumes
PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-03-02
Wide-Band Directional Cavity Antenna with Low Scanning Loss for WLAN
By
Progress In Electromagnetics Research C, Vol. 118, 231-245, 2022
Abstract
In this paper, a wide-band cavity antenna with low scanning loss for 20% antenna bandwidth as well as having a wide 20% 1-dB gain bandwidth over the antenna beam scanning angle is proposed. The antenna operates in the 5 GHz band of IEEE 802.11 ac wireless local area network (WLAN) applications. A beam scanning of 20˚ is demonstrated by varying the height of a slider within the antenna cavity. The broadside peak gain of 9.6 dBi is maintained for 20% of the antenna bandwidth with a gain reduction of only 0.3 dB throughout its operating frequency range. Besides, the scanning loss suffered by the antenna when scanning from the broadside to the maximum scanned angle is only 0.8 dB. The proposed scan performance is verified for a single element antenna and a two-element antenna array.
Citation
Somanatha Pai Swapna, Gulur Sadananda Karthikeya, Shiban Kishen Koul, and Ananjan Basu, "Wide-Band Directional Cavity Antenna with Low Scanning Loss for WLAN," Progress In Electromagnetics Research C, Vol. 118, 231-245, 2022.
doi:10.2528/PIERC22011603
References

1. Karmakar, R., S. Chattopadhyay, and S. Chakraborty, "Impact of IEEE 802.11n/ac phy/mac high throughput enhancements on transport and application protocols --- A survey," IEEE Communications Surveys Tutorials, Vol. 19, No. 4, 2050-2091, 2017.
doi:10.1109/COMST.2017.2745052        Google Scholar

2. Rocca, P., G. Oliveri, R. J. Mailloux, and A. Massa, "Unconventional phased array architectures and design methodologies --- A review," Proceedings of the IEEE, Vol. 104, No. 3, 544-560, 2016.
doi:10.1109/JPROC.2015.2512389        Google Scholar

3. Hansen, R. C., Phased Array Antennas, 2nd Ed., Wiley, 2009.
doi:10.1002/9780470529188

4. Rao, S. K. and C. Ostroot, "Design principles and guidelines for phased array and reflector antennas [antenna applications corner]," IEEE Antennas and Propagation Magazine, Vol. 62, No. 2, 74-81, 2020.
doi:10.1109/MAP.2020.2969261        Google Scholar

5. Chandran, A. R., S. Morris, S. Raman, N. Timmons, and J. Morrison, "Microstrip patch based switched beam antenna at 2.45 GHz for wireless sensor network applications," Journal of Electromagnetic Waves and Applications, Vol. 31, No. 13, 1333-1341, 2017.
doi:10.1080/09205071.2017.1348260        Google Scholar

6. Tian, H., L. J. Jiang, and T. Itoh, "A compact single-element pattern reconfigurable antenna with wide-angle scanning tuned by a single varactor," Progress In Electromagnetics Research C, Vol. 92, 137-150, 2019.
doi:10.2528/PIERC19021407        Google Scholar

7. Razmjoo, H., H. Abiri, and A. Yahaghi, "A novel dual band patch design for electrical steerable reflectarray antennas," Journal of Electromagnetic Waves and Applications, Vol. 34, No. 1, 35-50, 2020.
doi:10.1080/09205071.2019.1688198        Google Scholar

8. Yang, J., S.-S. Qi, W. Wu, and D.-G. Fang, "A novel high-gain sum and difference conical beamscanning reflector antenna," IEEE Access, Vol. 8, 103 291-103 300, 2020.
doi:10.1109/ACCESS.2020.2998835        Google Scholar

9. Ramazannia Tuloti, S. H., P. Rezaei, and F. Tavakkol Hamedani, "High-efficient wideband transmitarray antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 5, 817-820, 2018.
doi:10.1109/LAWP.2018.2817363        Google Scholar

10. Nguyen, B. D. and S. V. Tran, "Beam-steering re ectarray based on two-bit aperture-coupled reflectarray element," Journal of Electromagnetic Waves and Applications, Vol. 32, No. 1, 54-66, 2018.
doi:10.1080/09205071.2017.1366369        Google Scholar

11. Wang, H.-F., Z.-B. Wang, Z.-H. Wu, and Y.-R. Zhang, "Beam-scanning lens antenna based on elliptical paraboloid phase distribution metasurfaces," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 8, 1562-1566, 2019.
doi:10.1109/LAWP.2019.2922695        Google Scholar

12. Ghasemi, A. and J.-J. Laurin, "Beam steering in narrow-wall slotted ridge waveguide antenna using a rotating dielectric slab," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 10, 1773-1777, 2018.
doi:10.1109/LAWP.2018.2866086        Google Scholar

13. Afzal, M. U. and K. P. Esselle, "Steering the beam of medium-to-high gain antennas using nearfield phase transformation," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 4, 1680-1690, 2017.
doi:10.1109/TAP.2017.2670612        Google Scholar

14. Bjorgaard, J., M. Hoyack, E. Huber, M. Mirzaee, Y.-H. Chang, and S. Noghanian, "Design and fabrication of antennas using 3D printing," Progress In Electromagnetics Research C, Vol. 84, 119-134, 2018.
doi:10.2528/PIERC18011013        Google Scholar

15. McKerricher, G., D. Titterington, and A. Shamim, "A fully inkjet-printed 3-D honeycomb-inspired patch antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 544-547, 2016.
doi:10.1109/LAWP.2015.2457492        Google Scholar

16. Whittow, W. G., S. S. Bukhari, L. A. Jones, and I. L. Morrow, "Applications and future prospects for microstrip antennas using heterogeneous and complex 3-D geometry substrates," Progress In Electromagnetics Research, Vol. 144, 271-280, 2014.
doi:10.2528/PIER13121902        Google Scholar

17. Lou, Q., R.-X. Wu, and Y. Tian, "A rectangular loop yagi-uda antenna by the two materials 3-D printing technology," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 11, 2017-2020, 2018.
doi:10.1109/LAWP.2018.2868775        Google Scholar

18. Shin, S.-H., D. F. Alyasiri, M. D'Auria, W. J. Otter, C. W. Myant, D. Stokes, Z. Tian, N. M. Ridler, and S. Lucyszyn, "Polymer-based 3-D printed ku-band steerable phased-array antenna subsystem," IEEE Access, Vol. 7, 106 662-106 673, 2019.
doi:10.1109/ACCESS.2019.2932431        Google Scholar

19. Singh, D., A. Jain, and R. P. Yadav, "Development of circular loop frequency selective surface using 3-D printing technique," Progress In Electromagnetics Research M, Vol. 90, 195-203, 2020.
doi:10.2528/PIERM20011402        Google Scholar

20. He, Y., W. Tian, and L. Zhang, "A novel dual-broadband dual-polarized electrical downtilt base station antenna for 2G/3G applications," IEEE Access, Vol. 5, 15 241-15 249, 2017.
doi:10.1109/ACCESS.2017.2720591        Google Scholar

21. Izzat, N. M. K. M., M. L. Zimmerman, and K. E. Linehan, Antenna, base station and power coupler, U.S. Patent 6,922,169 B2, July 26, 2005.

22. Luk, K.-M. and Z. N. Chen, Antennas for base stations in Wireless Communications, 3rd Ed., McGraw Hill, 2009.

23. Zhang, H. and Y.-Z. Yin, "Single-layer single-feed wideband omnidirectional microstrip antenna with rotating square patches," Progress In Electromagnetics Research Letters, Vol. 93, 27-34, 2020.
doi:10.2528/PIERL20030301        Google Scholar

24. Roy, S., K. L. Baishnab, and U. Chakraborty, "Beam focusing compact wideband antenna loaded with mu-negative metamaterial for wireless LAN application," Progress In Electromagnetics Research Letters, Vol. 83, 33-44, 2018.
doi:10.2528/PIERC18012908        Google Scholar

25. Ghaemi, K. and N. Behdad, "A low-profile, wideband antenna with vertically polarized directional radiation," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1093-1096, 2016.
doi:10.1109/LAWP.2015.2493450        Google Scholar

26. Martinis, M., L. Bernard, K. Mahdjoubi, R. Sauleau, and S. Collardey, "Wideband antenna in cavity based on metasurfaces," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1053-1056, 2016.
doi:10.1109/LAWP.2015.2491609        Google Scholar

27. Sanchez Hernandez, D., Multiband Integrated Antennas for 4G Terminals, Artech House Inc, January 2008.

28. Tayli, D. and M. Gustafsson, "Physical bounds for antennas above a ground plane," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1281-1284, 2016.
doi:10.1109/LAWP.2015.2504795        Google Scholar

29. Garg, R., P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, 1st Ed., Artech House, Inc., 2001.

30. Ludvig-Osipov, A., J.-M. Hannula, P. Naccachian, and B. L. G. Jonsson, "Physical limitations of phased array antennas," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 9, 5512-5523, 2021.
doi:10.1109/TAP.2021.3069485        Google Scholar

31. Ghasemi, A. and J.-J. Laurin, "A continuous beam steering slotted waveguide antenna using rotating dielectric slabs," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 10, 6362-6370, 2019.
doi:10.1109/TAP.2019.2925272        Google Scholar

32. Yao, Y.-L., F.-S. Zhang, and F. Zhang, "A new approach to design circularly polarized beam-steering antenna arrays without phase shift circuits," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 5, 2354-2364, 2018.
doi:10.1109/TAP.2018.2811839        Google Scholar

33. Sanchez-Olivares, P., J. L. Masa-Campos, A. T. Muriel-Barrado, R. Villena-Medina, and G. M. Fernandez-Romero, "Mechanically reconfigurable linear array antenna fed by a tunable corporate waveguide network with tuning screws," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 8, 1430-1434, 2018.
doi:10.1109/LAWP.2018.2848911        Google Scholar