1. Karmakar, R., S. Chattopadhyay, and S. Chakraborty, "Impact of IEEE 802.11n/ac phy/mac high throughput enhancements on transport and application protocols --- A survey," IEEE Communications Surveys Tutorials, Vol. 19, No. 4, 2050-2091, 2017.
doi:10.1109/COMST.2017.2745052 Google Scholar
2. Rocca, P., G. Oliveri, R. J. Mailloux, and A. Massa, "Unconventional phased array architectures and design methodologies --- A review," Proceedings of the IEEE, Vol. 104, No. 3, 544-560, 2016.
doi:10.1109/JPROC.2015.2512389 Google Scholar
3. Hansen, R. C., Phased Array Antennas, 2nd Ed., Wiley, 2009.
doi:10.1002/9780470529188
4. Rao, S. K. and C. Ostroot, "Design principles and guidelines for phased array and reflector antennas [antenna applications corner]," IEEE Antennas and Propagation Magazine, Vol. 62, No. 2, 74-81, 2020.
doi:10.1109/MAP.2020.2969261 Google Scholar
5. Chandran, A. R., S. Morris, S. Raman, N. Timmons, and J. Morrison, "Microstrip patch based switched beam antenna at 2.45 GHz for wireless sensor network applications," Journal of Electromagnetic Waves and Applications, Vol. 31, No. 13, 1333-1341, 2017.
doi:10.1080/09205071.2017.1348260 Google Scholar
6. Tian, H., L. J. Jiang, and T. Itoh, "A compact single-element pattern reconfigurable antenna with wide-angle scanning tuned by a single varactor," Progress In Electromagnetics Research C, Vol. 92, 137-150, 2019.
doi:10.2528/PIERC19021407 Google Scholar
7. Razmjoo, H., H. Abiri, and A. Yahaghi, "A novel dual band patch design for electrical steerable reflectarray antennas," Journal of Electromagnetic Waves and Applications, Vol. 34, No. 1, 35-50, 2020.
doi:10.1080/09205071.2019.1688198 Google Scholar
8. Yang, J., S.-S. Qi, W. Wu, and D.-G. Fang, "A novel high-gain sum and difference conical beamscanning reflector antenna," IEEE Access, Vol. 8, 103 291-103 300, 2020.
doi:10.1109/ACCESS.2020.2998835 Google Scholar
9. Ramazannia Tuloti, S. H., P. Rezaei, and F. Tavakkol Hamedani, "High-efficient wideband transmitarray antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 5, 817-820, 2018.
doi:10.1109/LAWP.2018.2817363 Google Scholar
10. Nguyen, B. D. and S. V. Tran, "Beam-steering re ectarray based on two-bit aperture-coupled reflectarray element," Journal of Electromagnetic Waves and Applications, Vol. 32, No. 1, 54-66, 2018.
doi:10.1080/09205071.2017.1366369 Google Scholar
11. Wang, H.-F., Z.-B. Wang, Z.-H. Wu, and Y.-R. Zhang, "Beam-scanning lens antenna based on elliptical paraboloid phase distribution metasurfaces," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 8, 1562-1566, 2019.
doi:10.1109/LAWP.2019.2922695 Google Scholar
12. Ghasemi, A. and J.-J. Laurin, "Beam steering in narrow-wall slotted ridge waveguide antenna using a rotating dielectric slab," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 10, 1773-1777, 2018.
doi:10.1109/LAWP.2018.2866086 Google Scholar
13. Afzal, M. U. and K. P. Esselle, "Steering the beam of medium-to-high gain antennas using nearfield phase transformation," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 4, 1680-1690, 2017.
doi:10.1109/TAP.2017.2670612 Google Scholar
14. Bjorgaard, J., M. Hoyack, E. Huber, M. Mirzaee, Y.-H. Chang, and S. Noghanian, "Design and fabrication of antennas using 3D printing," Progress In Electromagnetics Research C, Vol. 84, 119-134, 2018.
doi:10.2528/PIERC18011013 Google Scholar
15. McKerricher, G., D. Titterington, and A. Shamim, "A fully inkjet-printed 3-D honeycomb-inspired patch antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 544-547, 2016.
doi:10.1109/LAWP.2015.2457492 Google Scholar
16. Whittow, W. G., S. S. Bukhari, L. A. Jones, and I. L. Morrow, "Applications and future prospects for microstrip antennas using heterogeneous and complex 3-D geometry substrates," Progress In Electromagnetics Research, Vol. 144, 271-280, 2014.
doi:10.2528/PIER13121902 Google Scholar
17. Lou, Q., R.-X. Wu, and Y. Tian, "A rectangular loop yagi-uda antenna by the two materials 3-D printing technology," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 11, 2017-2020, 2018.
doi:10.1109/LAWP.2018.2868775 Google Scholar
18. Shin, S.-H., D. F. Alyasiri, M. D'Auria, W. J. Otter, C. W. Myant, D. Stokes, Z. Tian, N. M. Ridler, and S. Lucyszyn, "Polymer-based 3-D printed ku-band steerable phased-array antenna subsystem," IEEE Access, Vol. 7, 106 662-106 673, 2019.
doi:10.1109/ACCESS.2019.2932431 Google Scholar
19. Singh, D., A. Jain, and R. P. Yadav, "Development of circular loop frequency selective surface using 3-D printing technique," Progress In Electromagnetics Research M, Vol. 90, 195-203, 2020.
doi:10.2528/PIERM20011402 Google Scholar
20. He, Y., W. Tian, and L. Zhang, "A novel dual-broadband dual-polarized electrical downtilt base station antenna for 2G/3G applications," IEEE Access, Vol. 5, 15 241-15 249, 2017.
doi:10.1109/ACCESS.2017.2720591 Google Scholar
21. Izzat, N. M. K. M., M. L. Zimmerman, and K. E. Linehan, Antenna, base station and power coupler, U.S. Patent 6,922,169 B2, July 26, 2005.
22. Luk, K.-M. and Z. N. Chen, Antennas for base stations in Wireless Communications, 3rd Ed., McGraw Hill, 2009.
23. Zhang, H. and Y.-Z. Yin, "Single-layer single-feed wideband omnidirectional microstrip antenna with rotating square patches," Progress In Electromagnetics Research Letters, Vol. 93, 27-34, 2020.
doi:10.2528/PIERL20030301 Google Scholar
24. Roy, S., K. L. Baishnab, and U. Chakraborty, "Beam focusing compact wideband antenna loaded with mu-negative metamaterial for wireless LAN application," Progress In Electromagnetics Research Letters, Vol. 83, 33-44, 2018.
doi:10.2528/PIERC18012908 Google Scholar
25. Ghaemi, K. and N. Behdad, "A low-profile, wideband antenna with vertically polarized directional radiation," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1093-1096, 2016.
doi:10.1109/LAWP.2015.2493450 Google Scholar
26. Martinis, M., L. Bernard, K. Mahdjoubi, R. Sauleau, and S. Collardey, "Wideband antenna in cavity based on metasurfaces," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1053-1056, 2016.
doi:10.1109/LAWP.2015.2491609 Google Scholar
27. Sanchez Hernandez, D., Multiband Integrated Antennas for 4G Terminals, Artech House Inc, January 2008.
28. Tayli, D. and M. Gustafsson, "Physical bounds for antennas above a ground plane," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1281-1284, 2016.
doi:10.1109/LAWP.2015.2504795 Google Scholar
29. Garg, R., P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, 1st Ed., Artech House, Inc., 2001.
30. Ludvig-Osipov, A., J.-M. Hannula, P. Naccachian, and B. L. G. Jonsson, "Physical limitations of phased array antennas," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 9, 5512-5523, 2021.
doi:10.1109/TAP.2021.3069485 Google Scholar
31. Ghasemi, A. and J.-J. Laurin, "A continuous beam steering slotted waveguide antenna using rotating dielectric slabs," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 10, 6362-6370, 2019.
doi:10.1109/TAP.2019.2925272 Google Scholar
32. Yao, Y.-L., F.-S. Zhang, and F. Zhang, "A new approach to design circularly polarized beam-steering antenna arrays without phase shift circuits," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 5, 2354-2364, 2018.
doi:10.1109/TAP.2018.2811839 Google Scholar
33. Sanchez-Olivares, P., J. L. Masa-Campos, A. T. Muriel-Barrado, R. Villena-Medina, and G. M. Fernandez-Romero, "Mechanically reconfigurable linear array antenna fed by a tunable corporate waveguide network with tuning screws," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 8, 1430-1434, 2018.
doi:10.1109/LAWP.2018.2848911 Google Scholar