Vol. 119
Latest Volume
All Volumes
PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-03-31
Tri-Band Bandpass Filter Using Mixed Short/Open Circuited Stubs and q-Factor with Controllable Bandwidth for WAS, ISM, and 5G Applications
By
Progress In Electromagnetics Research C, Vol. 119, 177-190, 2022
Abstract
Designing a multi-band bandpass filter (BPF) with controllable bandwidths is an alternative process to several technologies suggested by researchers. Hence, this paper presents a tri-band BPF in microstrip technology where T-shaped short-and-open stubs have alternating positions to use the maximally flat theory, based on the overall ABCD parameters of the circuit. The combination of the design Q-factor and the operating frequency to mismatch the design is the technique basis. The proposed structure comprises the quarter wavelength (λ/4) line section to develop a tri-band BPF frequency. All stubs are symmetrical relative to the center axis, while the prototype has been fabricated on a wafer of 22.42x7.62 mm2. Using an FR4 HTG-175 with a thickness of 1-mm, dielectric constant εr=4.4, and loss tangent tanδ=0.02, the (4.06-4.283) GHz, (5.877-6.408) GHz, and (14.281-14.589) GHz are obtained referring to a 10-dB of the return loss. In contrast, the insertion losses at the center frequencies are 2.107/1.354/4.08 dB and the fractional bandwidths of 2.134%, 5.346%, and 8.645%, respectively. These covers WAS (including RLAN), ISM, and 5G applications. However, the attenuation coefficient is between 1.326 dB and 4.368 dB. The tri-band BPF prototype was validated using the Anritsu MS4642B 20 GHz Vector Network Analyzer. The measured and E-simulated results have been compared with good agreement.
Citation
Omar Christian Massamba, Pierre Moukala Mpele, Franck Moukanda Mbango, and Desire Lilonga-Boyenga, "Tri-Band Bandpass Filter Using Mixed Short/Open Circuited Stubs and q-Factor with Controllable Bandwidth for WAS, ISM, and 5G Applications," Progress In Electromagnetics Research C, Vol. 119, 177-190, 2022.
doi:10.2528/PIERC22012713
References

1. Basavaraju, D. R., H. V. Kumaraswamy, and M. Kothari, "Design and simulation of microstrip narrow band pass filter for Asian Pacific Telecommunication band 28," RTEICT 2017 - 2nd IEEE International Conference on Recent Trends in Electronics, Information and Communication Technology, Proceedings, 1313-1316, 2017, doi: 10.1109/RTEICT.2017.8256811.        Google Scholar

2. Kumar, A., K. Goodwill, A. K. Arya, and M. V. Kartikeyan, "A compact narrow band microstrip bandpass filter with defected ground structure (DGS)," IEEE 2012 National Conference on Communications, NCC 2012, 2-5, 2012, doi: 10.1109/NCC.2012.6176815.        Google Scholar

3. Praludi, T., Y. Sulaeman, D. Kurniawan, and I. Syamsu, "Narrow-band microwave planar filter using multiple-poled hairpin resonators," AIP Conference Proceedings, Vol. 1755, 1-6, 2016, doi: 10.1063/1.4958606.        Google Scholar

4. Wu, Q. S. and L. Zhu, "Wideband impedance transformers with good frequency selectivity based on multisection quarter-wave lines and short-circuited stubs," IEEE Microwave and Wireless Components Letters, Vol. 26, 337-339, 2016, doi: 10.1109/LMWC.2016.2548986.        Google Scholar

5. Zhang, R. and L. Zhu, "Synthesis design of a wideband bandpass filter with inductively coupled short-circuited multi-mode resonator," IEEE Microwave and Wireless Components Letters, Vol. 22, 509-511, 2012, doi: 10.1109/LMWC.2012.2218096.        Google Scholar

6. Wang, X., Z. Ma, T. Xie, M. Ohira, C. P. Chen, and G. Lu, "Synthesis theory of ultra-wideband bandpass transformer and its Wilkinson power divider application with perfect in-band reflection/isolation," IEEE Transactions on Microwave Theory and Techniques, Vol. 67, 3377-3390, 2019, doi: 10.1109/TMTT.2019.2918539.        Google Scholar

7. Moukala Mpele, P., F. Moukanda Mbango, D. B. Onyango Konditi, and F. Ndagijimana, "A tri-band and miniaturized planar antenna based on countersink and defected ground structure techniques," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 31, e22617, 2021, doi: 10.1002/mmce.22617.        Google Scholar

8. Lakpo, C., F. Moukanda Mbango, D. Bernard, O. Konditi, and P. Moukala Mpele, "A compact dual-band Dolly-shaped antenna with parasitic elements for automotive radar and 5G applications," Heliyon, Vol. 7, e06793, 2021, doi: 10.1016/j.heliyon.2021.e06793.        Google Scholar

9. Pelluri, S. and M. V. Kartikeyan, "Compact triple-band bandpass filter using multi-mode HMSIW cavity and half-mode DGS," International Journal of Microwave and Wireless Technologies, Vol. 13, 103-110, 2021, doi: 10.1017/S1759078720000902.        Google Scholar

10. Dong, Y., C. T. M. Wu, and T. Itoh, "Miniaturised multi-band substrate integrated waveguide filters using complementary split-ring resonators," IET Microwaves, Antennas and Propagation, Vol. 6, 611-620, 2012, doi: 10.1049/iet-map.2011.0448.        Google Scholar

11. Mousavi, O., A. R. Eskandari, M. M. R. Kashani, and M. A. Shameli, "Compact uwb bandpass filter with two notched bands using sislr and DMS structure," Progress In Electromagnetics Research M, Vol. 80, 193-201, 2019.        Google Scholar

12. Yoon, K. and K. Kim, "Design of dual ultra-wideband band-pass filter using stepped impedance resonator λg/4 short stubs and T-shaped band-stop filter," Electronics, Vol. 10, 1-10, 2021, doi: 10.3390/electronics10161951.        Google Scholar

13. Oudaya Coumar, S. and S. Tamilselvan, "A compact conductor-backed CPW-based dual bandpass filter for satellite S-band and C-band," Journal of Electrical Systems and Information Technology, Vol. 7, 2020, doi: 10.1186/s43067-020-00013-8.        Google Scholar

14. Wu, Y., E. Fourn, P. Besnier, and C. Quendo, "Direct synthesis of multiband bandpass filters with generalized frequency transformation methods," IEEE Transactions on Microwave Theory and Techniques, Vol. 69, 3820-3831, 2021, doi: 10.1109/TMTT.2021.3086835.        Google Scholar

15. Cao, Q., H. Liu, and L. Gao, "Design of novel compact quad-band bandpass filter with high selectivity," Frequenz, Vol. 74, 53-59, 2020, doi: 10.1515/freq-2019-0043.        Google Scholar

16. Yang, Q., S. Liu, K.-D. Xu, and A. Zhang, "Compact octa-band bandpass filter based on controllable transmission zeros with wide upper stopband," ACES Journal, Vol. 36, 1159-1163, 2021, doi: 10.47037/2021.ACES.J.360906.        Google Scholar

17. Fok, M. P. and J. Ge, "Tunable multiband microwave photonic filters," Photonics, Vol. 4, 1-20, 2017, doi: 10.3390/photonics4040045.        Google Scholar

18. Liu, Q., J. Ge, and M. P. Fok, "Microwave photonic multiband filter with independently tunable passband spectral properties," Optics Letters, Vol. 43, 5685, 2018, doi: 10.1364/ol.43.005685.        Google Scholar

19. Ge, J. and M. P. Fok, "Reconfigurable RF multiband filter with widely tunable passbands based on cascaded optical interferometric filters," Journal of Lightwave Technology, Vol. 36, 2933-2940, 2018, doi: 10.1109/JLT.2018.2828327.        Google Scholar

20. Yildiz, S., A. Aksen, S. Kilinc, and S. B. Yarman, "Multiband filter design using generalized mapping functions and synthesis with lumped resonators," Radioengineering, Vol. 29, 343-352, 2020, doi: 10.13164/RE.2020.0343.        Google Scholar

21. Miljanović, D., M. Potrebić, and D. V. Tošić, "Design of microwave multibandpass filters with quasilumped resonators," Mathematical Problems in Engineering, Vol. 2015, 1-15, 2014, doi: 10.1155/2015/647302.        Google Scholar

22. Levy, R., "A new class of distributed prototype filters with applications to mixed lumped/distributed component design," IEEE Transactions on Microwave Theory and Techniques, Vol. 18, 1064-1071, 1970, doi: 10.1109/TMTT.1970.1127412.        Google Scholar

23. Simpson, D. J., R. Gomez-Garcia, and D. Psychogiou, "Single-/multi-band bandpass filters and duplexers with fully reconfigurable transfer-function characteristics," IEEE Transactions on Microwave Theory and Techniques, Vol. 67, 1854-1869, 2019, doi: 10.1109/TMTT.2019.2899849.        Google Scholar

24. Simpson, D., R. Gomez-Garcia, and D. Psychogiou, "Multi-band bandpass filters with multiple levels of transfer-function reconfigurability," Proceedings of the IEEE MTT-S International Microwave Symposium Digest, 91-94, 2019, doi: 10.1109/mwsym.2019.8700848.        Google Scholar

25. Oudaya Coumar, S., "Miniaturized DGS based multi-band pass filters for satellite applications," Journal of Ambient Intelligence and Humanized Computing, 1-9, 2021, doi: 10.1007/s12652-021-02898-3.        Google Scholar

26. Sengupta, A., S. R. Choudhury, and S. Das, "Super wide band tunable microstrip BPF using stub loaded MMR," Applied Computational Electromagnetics Society Journal, Vol. 34, 1399-1404, 2019.        Google Scholar

27. Guo, X., Y. Xu, and W. Wang, "Miniaturized planar ultra-wideband bandpass filter with notched band," Journal of Computer and Communications, Vol. 3, 100-105, 2015, doi: 10.4236/jcc.2015.33017.        Google Scholar

28. Ma, P., B. Wei, J. Hong, Z. Xu, X. Guo, B. Cao, and L. Jiang, "A design method of multimode multiband bandpass filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, 2791-2799, 2018, doi: 10.1109/TMTT.2018.2815682.        Google Scholar

29. Jaiswal, R. K. and N. P. Pathak, "Development and design of multi-band bandpass filter based on the concept of spoof surface plasmon polaritons," Proceedings of the 11th International Conference on Industrial and Information Systems, ICIIS 2016, 529-533, 2016, doi: 10.1109/ICIINFS.2016.8262997.        Google Scholar

30. Chen, F. C. and J. M. Qiu, "Dual-band bandpass filter with controllable characteristics using stub-loaded resonators," Progress In Electromagnetics Research Letters, Vol. 28, 45-51, 2012.        Google Scholar

31. Chen, H., X. Wang, and G. Lu, "A compact bandpass filter with multi-reflection zeros and sharp attenuations," Proceedings of the 2020 Cross Strait Radio Science and Wireless Technology Conference, CSRSWTC 2020 - Proceedings, 16-18, 2020, doi: 10.1109/CSRSWTC50769.2020.9372700.        Google Scholar

32. Xu, J., "Compact microstrip tri-band bandpass filter using new stubs loaded stepped-impedance resonator," IEEE Microwave and Wireless Components Letters, Vol. 26, 249-251, 2016, doi: 10.1109/LMWC.2016.2537740.        Google Scholar

33. Li, W., G. Wu, and X. Zhang, "Tri-band bandpass filter using modified tri-section and stub-loaded stepped impedance resonators," IEICE Electronics Express, Vol. 14, 1-6, 2017, doi: 10.1049/el.2012.0118.        Google Scholar

34. Firmansyah, T., M. Alaydrus, Y. Wahyu, E. T. Rahardjo, and G. Wibisono, "A highly independent multiband bandpass filter using a multi-coupled line stub-sir with folding structure," IEEE Access, Vol. 8, 83009-83026, 2020, doi: 10.1109/ACCESS.2020.2989370.        Google Scholar

35. Chen, W. Y., M. H. Weng, S. J. Chang, H. Kuan, and Y. H. Su, "A new tri-band bandpass filter for GSM, Wimax and ultra-wideband responses by using asymmetric stepped impedance resonators," Progress In Electromagnetics Research, Vol. 124, 365-381, 2012.        Google Scholar

36. Zhang, P., L. Liu, D. Chen, M. H. Weng, and R. Y. Yang, "Application of a stub-loaded square ring resonator for wideband bandpass filter design," Electronics, Vol. 9, 1-14, 2020, doi: 10.3390/electronics9010176.        Google Scholar

37. Thirumalaivasan, K., R. Nakkeeran, and S. Oudaya, "Circular resonator based compact ultra-wideband bandpass and notched filters with rejection of 5-6 GHz band," Proceedings of the Int. Conf. on Control. Communication and Power Engineering, 5-8, 2010.        Google Scholar

38. Alnahwi, F. M., Y. I. A. Al-Yasir, A. A. Abdulhameed, A. S. Abdullah, and R. A. Abd-Alhameed, "A low-cost microwave filter with improved passband and stopband characteristics using stub loaded multiple mode resonator for 5G mid-band applications," Electronics, Vol. 10, 1-15, 2021, doi: 10.3390/electronics10040450.        Google Scholar

39. Mohyuddin, W., G. H. Lee, D. S. Woo, H. C. Choi, and K. W. Kim, "Compact ultra-wideband phase inverter using microstrip-CPW-slotline transitions," Electronics, Vol. 10, 252-258, 2021, doi: 10.3390/electronics10030252.        Google Scholar

40. Weng, M. H., C. W. Hsu, S. W. Lan, and R. Y. Yang, "An ultra-wideband bandpass filter with a notch band and wide upper bandstop performances," Electronics, Vol. 8, 2019, doi: 10.3390/electronics8111316.        Google Scholar

41. Moukala Mpele, P., F. Moukanda Mbango, D. B. O. Konditi, and F. Ndagijimana, "A novel quadband ultra miniaturized planar antenna with metallic vias and defected ground structure for portable devices," Heliyon, Vol. 7, e06373, 2021, doi: 10.1016/j.heliyon.2021.e06373.        Google Scholar

42. Capet, N., C. Martel, J. Sokoloff, and O. Pascal, "Optimum high impedance surface configuration for mutual coupling reduction in small antenna arrays," Progress In Electromagnetics Research B, Vol. 32, 283-297, 2011.        Google Scholar

43. Sanabria, C., R. M. H. Gonzalez, and M. L. Aranda, "A simple model of inter-metallic connections (vias) in CMOS resonant rotary traveling wave oscillator (RTWO)," Proceedings of the 2017 14th International Conference on Electrical Engineering, Computing Science and Automatic Control, 1-5, 2017, doi: 10.1109/ICEEE.2017.8108860.        Google Scholar

44. Ji, C. H., F. Herrault, and M. G. Allen, "A metallic buried interconnect process for through-wafer interconnection," Journal of Micromechanics and Microengineering, Vol. 18, 2008, doi: 10.1088/0960-1317/18/8/085016.        Google Scholar

45. Palanisamy, P. and M. Subramani, "Design of metallic via based octa-port UWB MIMO antenna for iot applications," IETE Journal of Research, 1-11, 2021, doi: 10.1080/03772063.2021.1892540.        Google Scholar

46. Moitra, S., R. Dey, and P. S. Bhowmik, "Design and band coalition of dual band microstrip filter using DGS, coupled line structures and series inductive metallic vias," Proceedings of the Analog Integrated Circuits and Signal Processing, Vol. 101, 77-88, Springer US, 2019, doi: 10.1007/s10470-019-01412-2.        Google Scholar

47. Wadood, M. Y. and F. Babaeian, "A compact via-less ultra-wideband microstrip filter by utilizing open-circuit quarter wavelength stubs," Int. Scholary and Scienti c Research & Innovation, Vol. 13, 178-181, 2019.        Google Scholar

48. Zhang, R. and L. Zhu, "Design of a wideband bandpass filter with composite short- and open-circuited stubs," IEEE Microwave and Wireless Components Letters, Vol. 24, 96-98, 2014, doi: 10.1109/LMWC.2013.2291197.        Google Scholar

49. Collin, R. E., Foundations for Microwave Engineering, 2nd Ed., D. G. Dudley, Ed., John Wiley & Sons, Inc., 2001, doi: 10.1049/ep.1967.0023.

50. Mumford, W. W., "Maximally-flat filters in waveguide," Bell System Technical Journal, Vol. 27, 684-713, 1948, doi: 10.1002/j.1538-7305.1948.tb00919.x.        Google Scholar

51. Chen, T. S., "Waveguide resonant-iris filters with very wide passband and stopbands," International Journal of Electronics, Vol. 21, 401-424, 1966, doi: 10.1080/00207216608937922.        Google Scholar

52. Lu, H., J. Huang, X. Zhang, and N. Yuan, "Compact dual-band microstrip bandpass filter using stub-loaded stepped-impedance resonator," Proceedings of the Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), 1494-1498, 2017, doi: 10.1109/IAEAC.2017.8054262.        Google Scholar

53. Wang, H., L. Zhu, and W. Menzel, "Ultra-wideband bandpass filter with hybrid microstrip/CPW structure," IEEE Microwave and Wireless Components Letters, Vol. 15, 844-846, 2005, doi: 10.1109/LMWC.2005.860016.        Google Scholar

54. Moukanda Mbango, F., F. Ndagijimana, and A. L. Lomanga Okana, "Dual coaxial probes in transmission inserted by dielectric with two different thicknesses to extract the material complex relative permittivity: Discontinuity impacts," Progress In Electromagnetics Research C, Vol. 110, 67-80, 2021, doi: 10.2528/PIERC21010403.        Google Scholar

55. Killamsetty, V. K. and B. Mukherjee, "Compact triple band bandpass filters design using mixed coupled resonators," AEU - International Journal of Electronics and Communications, Vol. 107, 49-56, 2019, doi: 10.1016/j.aeue.2019.03.005.        Google Scholar

56. Denis, B., K. Song, and F. Zhang, "Compact dual-band bandpass filter using open stub-loaded stepped impedance resonator with cross-slots," International Journal of Microwave and Wireless Technologies, Vol. 9, 269-274, 2017, doi: 10.1017/S1759078715001786.        Google Scholar

57. Malherbe, J. A. G., "Application of a series open circuit stub transform to bandpass filter design," 2018 48th European Microwave Conference, EuMC 2018, 368-371, 2018, doi: 10.23919/EuMC.2018.8541510.        Google Scholar

58. Kusama, Y. and R. Isozaki, "Compact and broadband microstrip band-stop filters with single rectangular stubs," Applied Sciences, Vol. 9, 248-259, 2019, doi: 10.3390/app9020248.        Google Scholar

59. Talluri, S. R., "Design of dual band-reject filter based on short-circuited parallel coupled lines structure at S-band," International Journal of Advances in Microwave Technology, Vol. 3, 180-184, 2018, doi: 10.32452/ijamt.2018.180184.        Google Scholar

60. Ramanujam, P., C. Arumugam, P. G. R. Venkatesan, and M. Ponnusamy, "Design of compact UWB filter using parallel-coupled line and circular open-circuited stubs," IETE Journal of Research, 1-8, 2020, doi: 10.1080/03772063.2020.1803772.        Google Scholar

61. Boutejdar, A., G. Nadim, and A. S. Omar, "Compact bandpass filter structure using an open stub quarter-wavelength microstrip line corrections," Proceedings of the 35th European Microwave Conference, Vol. 2, 1271-1273, 2005, doi: 10.1109/EUMC.2005.1610166.        Google Scholar

62. David, M., "Pozar microwave filters," Microwave Engineering, 71-73, Wiley & Sons Ltd., USA, 2012.        Google Scholar

63. Edwards, T. C. and M. B. Steer, Foundations for Microstrip Circuit Design, 4th Ed., John Wiley & Sons, Ltd., 2016, doi: 10.1002/9781118936160.

64. Moukanda Mbango, F. and F. Ndagijimana, "Electric parameter extractions using a broadband technique from coaxial line discontinuities," International Journal of Scienti c Research and Management, Vol. 7, 248-253, 2019, doi: 10.18535/ijsrm/v7i5.ec01.        Google Scholar

65. Bird, T. S., "Definition and misuse of return loss," IEEE Antennas and Propagation Magazine, Vol. 51, 166-167, 2009, doi: 10.1109/MAP.2009.5162049.        Google Scholar

66. Fischer, B. E., V. Way, A. Arbor, I. J. Lahaie, V. Way, and A. Arbor, "On the definition of return loss," IEEE Antennas and Propagation Magazine, Vol. 55, 172-174, 2013, doi: 10.1109/MAP.2013.6529339.        Google Scholar

67. Beatty, R. W., "Insertion loss," Proceedings of the IEEE, Vol. 52, 663-671, 1964, doi: 10.1109/PROC.1964.3047.        Google Scholar