Vol. 120
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-06-02
Distributed RSS-Based 2D Source Localization System in Extended Indoor Environment
By
Progress In Electromagnetics Research C, Vol. 120, 159-177, 2022
Abstract
The evolution of computing and network technologies which involve thousands of devices that are connected wirelessly to serve variety of applications in Internet-of-Things (IoT) draws significant interest in locating the indoor objects. In our paper, we focus on developing a hybrid source positioning technique with off-the-shelf hardware modules. A rectangular corridor with a multipath environment is considered in our work. For better localization accuracy, the corridor is classified into segments with threshold RSS values. Based on the measurement data segment-wise logarithmic regression models are developed, and the performance in terms of Correlation Coefficient (R2) and Root Mean Square Error (RMSE) is evaluated. For localization, basically trilateration is used. However, to overcome the adverse issues due to the indoor environment such as flip ambiguity, uncertainty in range measurements, circumscribing the circle's scenarios, two circle intersection, dynamic circle contraction, and expansion methods are used. Relevant Pseudocode algorithms are presented. The proposed hybrid method significantly improves the localization accuracy. The standard deviation of errors in x and y directions are about 16.75 cm, 66.24 cm in the first segment and 19.75 cm, 60.16 cm in the second segment. The analysis and results are useful in establishing state of the art IoT and future generation 5G networks.
Citation
Tunguturi Sridher, Achanta Dattatreya Sarma, Perumalla Naveen Kumar, and Kuruva Lakshmanna, "Distributed RSS-Based 2D Source Localization System in Extended Indoor Environment," Progress In Electromagnetics Research C, Vol. 120, 159-177, 2022.
doi:10.2528/PIERC22021103
References

1. Omer, M., Y. Ran, and G. Y. Tian, "Indoor localization systems for passive UHF RFID tag based on RSSI radio map database," Progress In Electromagnetics Research M, Vol. 77, 51-60, 2019.

2. Mitilineos, S., D. M. Kyriazanos, O. E. Segou, J. N. Goufas, and S. Thomopoulos, "Indoor localisation with wireless sensor networks," Progress In Electromagnetics Research, Vol. 109, 441-474, 2010.

3. Obeidat, H. A., et al. "An indoor path loss prediction model using wall correction factors for wireless local area network and 5G indoor networks," Radio Science, Vol. 53, No. 4, 544-564, Apr. 2018, doi: 10.1002/2018RS006536.

4. Ciuonzo, D., P. S. Rossi, and P. K. Varshney, "Distributed detection in wireless sensor networks under multiplicative fading via generalized score tests," IEEE Internet of Things Journal, Vol. 8, No. 11, 9059-9071, Jun. 1, 2021, doi: 10.1109/JIOT.2021.3056325.

5. Ciuonzo, D., P. S. Rossi, and P. Willett, "Generalized rao test for decentralized detection of an uncooperative target," IEEE Signal Processing Letters, Vol. 24, No. 5, 678-682, May 2017, doi: 10.1109/LSP.2017.2686377.

6. Jiang, J., et al. "A distributed RSS-based localization using a dynamic circle expand- ing mechanism," IEEE Sensors Journal, Vol. 13, No. 10, 3754-3766, Oct. 2013, doi: 10.1109/JSEN.2013.2258905.

7. Wang, Z., H. Zhang, T. Lu, and T. A. Gulliver, "A grid-based localization algorithm for wireless sensor networks using connectivity and RSS rank," IEEE Access, Vol. 6, 8426-8439, 2018, doi: 10.1109/ACCESS.2018.2804381.

8. Achanta, H. K., S. Dasgupta, R. Mudumbai, W. Xu, and Z. Ding, "Optimum sensor placement for localization of a hazardous source under log normal shadowing," Numerical Algebra, Control & Optimization, Vol. 9, No. 3, 361-382, 2019, doi: 10.3934/naco.2019024.

9. Achanta, H. K., S. Dasgupta, and Z. Ding, "Optimum sensor placement for localization in three dimensional under log normal shadowing," Proceedings of the International Congress on Image and Signal Processing (CISP), 1898-1901, 2012.

10. Sridher, T., A. D. Sarma, P. Naveen Kumar, and K. Lakshmanna, "Results of indoor localization using the optimum pathloss model at 2.4 GHz," URSI GASS 2020, 1-4, Rome, Italy, Aug. 29-Sep. 5, 2020.

11. Bultitude, R. J. C., "Measurement, characterization and modeling of indoor 800/900 MHz radio channels," IEEE Commun. Mag., Vol. 25, No. 6, 5-12, Jun. 1987.

12. Sarma, A. D., "The influence of oxygen absorption on frequencies near 60 GHz: A --- Review," IETE Technical Review, Vol. 5, No. 8, 311-317, 1988, doi: 10.1080/02564602.1988.11438335.

13. Rappaport, T. S., "Characterization of UHF multipath radio propagation inside factory buildings," IEEE Trans. Antennas Propagat., Vol. 37, No. 8, 1058-1069, Aug. 1989.

14. Liu, H., H. Darabi, P. Banerjee, and J. Liu, "Survey of wireless indoor positioning techniques and systems," IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), Vol. 37, No. 6, 1067-1080, Nov. 2007, doi: 10.1109/TSMCC.2007.905750.

15. Dai, Z. and F. J. Podd, "A power-efficient BLE augmented GNSS approach to site-specific navigation," 2020 IEEE/ION Position, Location and Navigation Symposium (PLANS), 1305-1310, Portland, OR, USA, 2020, doi: 10.1109/PLANS46316.2020.9110133.

16. Yu, Y., et al. "Precise 3D indoor localization based on Wi-Fi FTM and built-in sensors," IEEE Internet of Things Journal, Vol. 7, No. 12, 11753-11765, Dec. 2020, doi: 10.1109/JIOT.2020.2999626.

17. Zheng, H., X. Zhong, and P. Liu, "RSS-based indoor passive localization using clustering and filtering in a LTE network," 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), 1-6, Antwerp, Belgium, 2020, doi: 10.1109/VTC2020-Spring48590.2020.9128821.

18. Aneuryn-Evans, G. and A. Deaton, "Testing linear versus logarithmic regression models," The Review of Economic Studies, Vol. 47, No. 1, 275-291, 1980, JSTOR, Accessed Jul. 12, 2020, www.jstor.org/stable/2297113.

19. Christensen, R., Log-Linear Models and Logistic Regression, 2 Edition, Springer, 1998.

20. Bendat, J. S. and A. G. Piersol, Random Data: Analysis and Measurement Procedures, 4th Edition, Mar. 2010.

21. Zhou, B., Q. Chen, H. Wymeersch, P. Xiao, and L. Zhao, "Variational inference-based positioning with nondeterministic measurement accuracies and reference location errors," IEEE Transactions on Mobile Computing, Vol. 16, No. 10, 2955-2969, Oct. 1, 2017, doi: 10.1109/TMC.2016.2640294.

22. Yang, Z. and Y. Liu, "Quality of trilateration: Confidence-based iterative localization," IEEE Transactions on Parallel and Distributed Systems, Vol. 21, No. 5, 631-640, May 2010, doi: 10.1109/TPDS.2009.90.

23. Oyie, N. O. and T. J. O. Afullo, "A comparative study of dual-slope path loss model in various indoor environments at 14 to 22 GHz," 2018 Progress in Electromagnetics Research Symposium (PIERS-Toyama), 121-128, Toyama, Japan, Aug. 1-4, 2018.

24. Maccartney, G. R., T. S. Rappaport, S. Sun, and S. Deng, "Indoor office wideband millimeter- wave propagation measurements and channel models at 28 and 73 GHz for ultra-dense 5G wireless networks," IEEE Access, Vol. 3, 2388-2424, 2015, doi: 10.1109/ACCESS.2015.2486778.

25. Bultitude, R. J. C., P. Melancon, H. Zaghloul, G. Morrison, and M. Prokki, "The dependence of indoor radio channel multipath characteristics of transmit/receiver ranges," IEEE Journal on Selected Areas in Communications, Vol. 11, No. 7, 979-990, Sep. 1993, doi: 10.1109/49.233211.

26. Ke, W., J. Jin, H. Xu, K. Yu, and J. Shao, "Online-calibrated CS-based indoor localization over IEEE 802.11 wireless infrastructure," Progress In Electromagnetics Research C, Vol. 70, 73-81, 2016.

27. Plets, D., et al. "Coverage prediction and optimization algorithms for indoor environments," EURASIP Journal on Wireless Communications and Networking, 1-23, Print, 2012.

28. Whitman, G. M., K.-S. Kim, and E. Niver, "A theoretical model for radio signal attenuation inside buildings," IEEE Transactions on Vehicular Technology, Vol. 44, No. 3, 621-629, Aug. 1995, doi: 10.1109/25.406630.

29. ITUR-R P.2040-1 "Effects of building materials and structures on radidowave propagation above about 100 MHz,", Jul. 2015.

30. Oyie, N. O. and T. J. O. Afullo, "Measurements and analysis of large-scale path loss model at 14 and 22 GHz in indoor corridor," IEEE Access, Vol. 6, 17205-17214, 2018, doi: 10.1109/ACCESS.2018.2802038.

31. Batalhaet, D. S., et al. "Indoor corridor and office propagation measurements and channel models at 8, 9, 10 and 11 GHz," IEEE Access, Vol. 7, 55005-55021, 2019, doi: 10.1109/ACCESS.2019.2911866.

32. Su, H. and M. L. Berenson, "Comparing tests of homoscedasticity in simple linear regression," JSM Math Stat., Vol. 4, No. 1, 1017, 2017.

33. Lasla, N., M. F. Younis, A. Ouadjaout, and N. Badache, "An effective area-based localization algorithm for wireless networks," IEEE Trans. Comput., Vol. 64, No. 8, 2103-2118, Aug. 2015.

34., https://www.statisticshowto.com/heteroscedasticity-simple-definition-examples/.

35., http://www.ambrsoft.com/TrigoCalc/Circles2/circle2intersection/CircleCircleIntersection.htm.

36., https://www.espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf.