Vol. 119
Latest Volume
All Volumes
PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-04-22
UWB Compact Microstrip Patch Antenna with High Directivity Using Novel Star-Shaped Frequency Selective Surface
By
Progress In Electromagnetics Research C, Vol. 119, 255-273, 2022
Abstract
This paper presents a single element ultra-wideband (UWB) microstrip patch antenna with high directivity. In this work, techniques like partial ground and modification of the patch have been used to achieve the UWB. The designed antenna consists of a modified U-shaped radiating patch with a microstrip feed attached directly to it. The initial U-shaped radiating patch is modified by attaching an inverted trapezium on both sides of the feed line. Two parasitic patches are introduced near the feed structure of the antenna after etching away two rectangular slots with appropriate dimensions. Moreover, the proposed structure consists of a partial ground plane which contributes to the UWB nature. Modifications in the form of square and triangular slot etching are carried out in this part of the proposed structure. The proposed antenna is compact with dimensions of 16 mm × 19 mm × 1.6 mm. Finally, gain enhancement of the proposed structure is done by placing a Frequency Selective Surface (FSS) behind the proposed antenna with an air spacer in between the structures. A novel FSS unit cell is proposed, and its performances are checked experimentally. Later, FSS is combined with the antenna, and measured peak gain of 9.7 dBi is obtained experimentally. The overall size of the structure is 62.5 mm × 52 mm × 24.9 mm.
Citation
Rajesh Kumar, and Devi Charan Dhubkarya, "UWB Compact Microstrip Patch Antenna with High Directivity Using Novel Star-Shaped Frequency Selective Surface," Progress In Electromagnetics Research C, Vol. 119, 255-273, 2022.
doi:10.2528/PIERC22030307
References

1. Aiello, G. R. and G. D. Rogerson, "Ultra-wideband wireless systems," IEEE Microw. Mag., Vol. 4, No. 2, 36-47, 2003.
doi:

504 Gateway Time-out

       Google Scholar

2. Chung, K. L., W. Y. Tam, and H. K. Kan, "A compact wideband PIFA," Microwave and Optical Technology Letters, Vol. 51, 2554-2556, November 2009.
doi:The server didn't respond in time.        Google Scholar

3. Siwiak, K. and D. McKeown, Ultra-Wideband Radio Technology, No. 9, 193, John Wiley & Sons, Ltd, Chichester, UK, 2004.
doi:

4. Ranga, Y., L. Matekovits, K. P. Esselle, and A. R. Weily, "Multioctave frequency selective surface re ector for ultrawideband antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 219-222, 2011.        Google Scholar

5. Kumar, C., M. I. Pasha, and D. Guha, "Defected ground structure integrated microstrip array antenna for improved radiation properties," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 310-312, 2017.        Google Scholar

6. Xue, K., H. Zhai, S. Li, and Y. Shang, "A miniaturized absorber frequency selective surface with good angular stability," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 1, 24-28, 2020.        Google Scholar

7. Mirza, H., T. M. Hossain, P. J. Soh, et al. "Deployable linear-to-circular polarizer using PDMS based on unloaded and loaded circular FSS arrays for pico-satellites," IEEE Access, Vol. 7, 2034-2041, 2019.        Google Scholar

8. Syed, I. S., Y. Ranga, L. Matekovits, K. P. Esselle, and S. G. Hay, "A singlelayer frequency-selective surface for ultrawideband electromagnetic shielding," IEEE Trans. Electromagn. Compat., Vol. 56, No. 6, 1404-1411, 2014.        Google Scholar

9. Lazaro, A., A. Ramos, D. Girbau, and R. Villarino, "A novel UWB RFID tag using active frequency selective surface," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 3, 1155-1165, 2013.        Google Scholar

10. Sheng, X., J. Ge, K. Han, and X. Zhu, "Transmissive/re ective frequency selective surface for satellite applications," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 7, 1136-1140, 2018.        Google Scholar

11. Chatterjee, A. and S. K. Parui, "Performance enhancement of a dualband monopole antenna by using a frequency-selective surfacebased corner reflector," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 6, 2165-2171, 2016.        Google Scholar

12. Kushwaha, N., R. Kumar, R. V. S. Ram Krishna, and T. Oli, "Design and analysis of new compact UWB frequency selective surface and its equivalent circuit," Progress In Electromagnetics Research, Vol. 46, 31-39, 2014.        Google Scholar

13. Yahya, R., A. Nakamura, M. Itami, and T. A. Denidni, "A novel UWB FSS-based polarization diversity antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2525-2528, 2017.        Google Scholar

14. Hua, B., X. He, and Y. Yang, "Polarisation-independent UWB frequency selective surface based on 2.5 D miniaturised hexagonal ring," Electronics Letters, Vol. 53, No. 23, 1502-1504, 2017.        Google Scholar

15. Tahir, F. A., T. Arshad, S. Ullah, and J. A. Flint, "A novel FSS for gain enhancement of printed antennas in UWB frequency spectrum," Microwave and Optical Technology Letters, Vol. 59, No. 10, 2698-2704, 2017.        Google Scholar

16. Kundu, S., A. Chatterjee, S. K. Jana, and S. K. Parui, "A compact umbrella-shaped UWB antenna with gain augmentation using frequency selective surface," Radioengineering, Vol. 27, No. 2, 448-454, 2018.        Google Scholar

17. Kundu, S., "Gain augmentation of a CPW fed printed miniature UWB antenna using frequency selective surface," Microw. Opt. Technol. Lett., Vol. 60, No. 7, 1820-1826, 2018.        Google Scholar

18. Mondal, R., P. S. Reddy, D. C. Sarkar, and P. P. Sarkar, "Compact ultrawideband antenna: Improvement of gain and FBR across the entire bandwidth using FSS," IET Microw. Antennas Propag., Vol. 14, No. 1, 66-74, 2019.        Google Scholar

19. Das, P. and K. Mandal, "Modelling of ultra-wide stop-band frequency-selective surface to enhance the gain of a UWB antenna," IET Microw. Antennas Propag., Vol. 13, No. 3, 269-277, 2019.        Google Scholar

20. Buynevich, V., H. M. Jol, and D. M. F. Gerald, "Coastal environments," Ground Penetrating Radar: Theory and Applications, 299-322, 1st Edition, Jol H. M. (ed.), Elsevier Press, 2009.        Google Scholar

21. Cheng, H., H. Yang, Y. Li, and Y. Chen, "A compact Vivaldi antenna with arti cial material lens and sidelobe suppressor for GPR applications," IEEE Access, Vol. 8, 64056-64063, 2020.        Google Scholar

22. Yektakhah, B., J. Chiu, F. Alsallum, and K. L.-P. Sarabandi, "Low-frequency, UWB antenna for imaging of deeply buried targets," IEEE Geosci. Remote Sens. Lett., Vol. 17, No. 7, 1168-1172, 2019.        Google Scholar

23. Guo, J., J. Tong, Q. Zhao, J. Jiao, J. Huo, and C. Ma, "An ultrawide band antipodal Vivaldi antenna for airborne GPR application," IEEE Geosci. Remote Sens. Lett., Vol. 16, No. 10, 1560-1564, 2019.        Google Scholar

24. Guo, L., H. Yang, Q. Zhang, and M. Deng, "A compact antipodal tapered slot antenna with arti cial material lens and re ector for GPR applications," IEEE Access, Vol. 6, 44244-44251, 2018.        Google Scholar

25. Mahmud, M. Z., M. T. Islam, N. Misran, S. Kibria, and M. Samsuzzaman, "Microwave imaging for breast tumor detection using uniplanar AMC based CPW-fed microstrip antenna," IEEE Access, Vol. 6, 44763-44775, 2018.        Google Scholar

26. Islam, M. T., M. M. Islam, M. Samsuzzaman, M. R. I. Faruque, and N. Misran, "A negative index metamaterial-inspired UWB antenna with an integration of complementary SRR and CLS unit cells for microwave imaging sensor applications," Sensors, Vol. 15, No. 5, 11601-11627, 2015.        Google Scholar

27. Abdulhasan, R. A., R. Alias, K. N. Ramli, F. C. Seman, and R. A. Abd-Alhameed, "High gain CPW-fed UWB planar monopole antenna-based compact uniplanar frequency selective surface for microwave imaging," Int. J. RF Microw. Comput. Aided Eng., Vol. 29, No. 8, e21757, 2019.        Google Scholar

28. Lin, C. C., Y. C. Kan, L. C. Kuo, and H. R. Chuang, "A planar triangular monopole antenna for UWB communication," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 10, 624-626, 2005.        Google Scholar

29. Deng, C., Y. Xie, and P. Li, "CPW-fed planar printed monopole antenna with impedance bandwidth enhanced," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 1394-1397, 2009.        Google Scholar

30. Liu, J., S. Zhong, and K. P. Esselle, "A printed elliptical monopole antenna with modi ed feeding structure for bandwidth enhancement," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 2, 667-670, 2011.        Google Scholar

31. Abbosh, A. M. and M. E. Bialkowski, "Design of ultrawideband planar monopole antennas of circular and elliptical shape," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 1, 17-23, 2008.        Google Scholar

32. Liang, J., C. C. Chiau, X. Chen, et al. "Printed circular disc monopole antenna for ultra-wideband applications," Electronics Letters, Vol. 40, No. 20, 1246-1247, 2004.        Google Scholar

33. Gopikrishna, M., D. D. Krishna, C. K. Anandan, et al. "Design of a compact semi-elliptic monopole slot antenna for UWB systems," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 6, 1834-1837, 2009.        Google Scholar

34. Alsath, M. G. N. and M. Kanagasabai, "Compact UWB monopole antenna for automotive communications," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 9, 4204-4208, 2015.        Google Scholar

35. Hong, C. Y., C. W. Ling, I. Y. Tarn, et al. "Design of a planar ultrawideband antenna with a new band-notch structure," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 12, 3391-3397, 2007.        Google Scholar

36. Lu, Y., Y. Huang, H. T. Chattha, et al. "Reducing ground-plane effects on UWB monopole antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 147-150, 2011.        Google Scholar

37. Ren, J., W. Hu, Y. Yin, and R. Fan, "Compact printed MIMO antenna for UWB applications," IEEE Antennas and Wireless Propagation Letters, Vol. 29, No. 13, 1517-1520, 2014.        Google Scholar

38. Zhou, Z. L., L. Li, and J. S. Hong, "Compact UWB printed monopole antenna with dual narrow band notches for WiMAX/WLAN bands," Electronics Letters, Vol. 47, No. 20, 1111-1112, September 29, 2011.        Google Scholar

39. Liu, W., Y. Yin, W. Xu, and S. Zuo, "Compact open-slot antenna with bandwidth enhancement," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 10, 850-853, 2011.        Google Scholar

40. Lu, Y., Y. Huang, Y. C. Shen, and H. T. Chattha, "A further study of planar UWB monopole antennas," Proc. Loughbrough Antennas Propag. Conf. 2007, 353-356, September 2009.        Google Scholar

41. Chan, K. C. L., Y. Huang, and X. Zhu, "A planar elliptical monopole antenna for UWB applications," Proc. IEEE/ACES Int. Conf. Wireless Commun. Appl. Comput. Electromagn., 182-185, April 2005.        Google Scholar

42. Chen, Z. N., M. J. Ammann, X. Qing, X. H. Wu, T. S. P. See, and A. Cat, "Planar antennas," IEEE Microw. Mag., Vol. 7, No. 6, 63-73, December 2006.        Google Scholar

43. Liang, J. X., C. C. Chian, X. D. Chen, and C. G. Parini, "Study of a printed circular disc monopole antenna for UWB systems," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 11, 3500-3504, November 2005.        Google Scholar

44. Bekasiewicz, A. and S. Koziel, "Structure and computationally efficient simulation-driven design of compact UWB monopole antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1282-1285, 2015.        Google Scholar

45. Fereidoony, F., S. Chamaani, and S. A. Mirtaheri, "UWB monopole antenna with stable radiation pattern and low transient distortion," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 302-305, 2011.        Google Scholar

46. Pandey, G. K., H. S. Singh, P. K. Bharti, et al. "UWB monopole antenna with enhanced gain and stable radiation pattern using gate like structures," Int. Conf. Microwave Photonics, ICMAP, 4-7, Dhanbad, India, December 2013.        Google Scholar

47. Ryu, K. S. and A. A. Kishk, "UWB dielectric resonator antenna having consistent omnidirectional pattern and low cross-polarization characteristics," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 4, 1403-1408, 2011.        Google Scholar

48. Wang, J. and Y. Yin, "Differential-fed UWB microstrip antenna with improved radiation patterns," Electronics Letters, Vol. 50, No. 20, 1412-1414, 2014.        Google Scholar

49. Hsieh, T. H. and C. S. Lee, "Double-layer high-gain microstrip array antenna," IEEE Transactions on Antennas and Propagation, Vol. 48, No. 7, 1033-1035, 2000.        Google Scholar

50. Moharamzadeh, E. and A. M. Javan, "Triple-band frequency-selective surfaces to enhance gain of x- band triangle slot antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1145-1148, 2013.        Google Scholar

51. Das, P. and K. Mandal, "Modelling of ultra-wide stop-band frequency-selective surface to enhance the gain of a UWB antenna," IET Microwaves, Antennas & Propagation, Vol. 13, No. 3, 269-277, 2018.        Google Scholar

52. Ranga, Y., L. Matekovits, K. P. Esselle, and A. R. Weily, "Multioctave frequency selective surface re ector for ultrawideband antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 219-222, 2011.        Google Scholar

53. Krishna, R. V. S. and R. Kumar, "Slotted ground microstrip antenna with FSS re ector for high-gain horizontal polarisation," Electronics Letters, Vol. 51, No. 8, 599-600, 2015.        Google Scholar

54. Al-Gburi, A. J. A., I. B. M. Ibrahim, M. Y. Zeain, and Z. Zakaria, "Compact size and high gain of CPW-fed UWB strawberry artistic shaped printed monopole antennas using FSS single layer reflector," IEEE Access, Vol. 8, 92697-92707, 2020.        Google Scholar

55. Paul, G. S. and K. Mandal, "Polarization-insensitive and angularly stable compact ultrawide stop-band frequency selective surface," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 9, 1917-1921, 2019.        Google Scholar

56. Hong, T., M. Wang, K. Peng, Q. Zhao, and S. Gong, "Compact ultra-wide band frequency selective surface with high selectivity," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 7, 5724-5729, 2020.        Google Scholar

57. Sampath, S. S. and R. Sivasamy, "A single-layer UWB frequency-selective surface with band-stop response," IEEE Transactions on Electromagnetic Compatibility, Vol. 62, No. 1, 276-279, 2018.        Google Scholar