Vol. 120
Latest Volume
All Volumes
PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-05-22
Effect of Temperature on the Properties of Omnidirectional Mirror One Dimensional Photonic Crystal
By
Progress In Electromagnetics Research C, Vol. 120, 145-157, 2022
Abstract
In this work, we present numerical results regarding the effects of temperature on the omnidirectional photonic band gap (OPBG) of ternary 1DPC containing metal (Ag) layer or graphene layer. By periodically introducing layer metal (Ag) or graphene into 1DPC, the width of OPBG has been increased. As the temperature increases, the photonic band gap of the OPBG becomes wider. Compared to the conventional OPBG in ternary 1DPC containing Ag, the OPBG in 1DPC containing graphene with temperature T = 1000˚K is greatly broadened by 2.04 times. The theoretical basis of our study adopts the transfer matrix method TMM. In fact, these broad omnidirectional and thermally tunable OPBGs will offer many prospects for omnidirectional mirrors, temperature sensing device, optical filters, polarizer, and other optical devices.
Citation
Olfa Nasri, Jihene Zaghdoudi, and Mounir Kanzari, "Effect of Temperature on the Properties of Omnidirectional Mirror One Dimensional Photonic Crystal," Progress In Electromagnetics Research C, Vol. 120, 145-157, 2022.
doi:10.2528/PIERC22030503
References

1. Joannopoulos, J. D., S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, Princeton University Press, Princeton, New Jersey, 2008.
doi:

504 Gateway Time-out


2. Arismar Cerqueira, S., "Recent progress and novel applications of photonic crystal fibers," Rep. Prog. Phys., Vol. 73, No. 2, 024401, 2010, doi: 10.1088/0034-4885/73/2/024401.
doi:The server didn't respond in time.        Google Scholar

3. Najafgholinezhad, S. and S. Olyaee, "A photonic crystal biosensor with temperature dependency investigation of micro-cavity resonator," Optik, Vol. 125, No. 21, 6562-6565, Nov. 2014, doi: 10.1016/j.ijleo.2014.08.043.
doi:        Google Scholar

4. Liu, D., L. Chen, D. Cao, and F. Liu, "Terahertz metallic photonic crystals integrated with dielectric waveguides," Opt. Commun., Vol. 475, 126197, 2020, doi: 10.1016/j.optcom.2020.126197.        Google Scholar

5. Kumar, A., V. Kumar, A. Nautiyal, Kh. S. Singh, and S. P. Ojha, "Optical switch based on nonlinear one dimensional photonic band gap material," Optik, Vol. 145, 473-478, Sept. 2017, doi: 10.1016/j.ijleo.2017.07.062.        Google Scholar

6. Zheng, Q.-R., Y.-Q. Fu, and N.-C. Yuan, "Characteristics of planar PBG structures with a cover layer," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 11, 1439-1453, 2006.        Google Scholar

7. Ozbay, E., B. Temelkuran, and M. Bayindir, "Microwave applications of photonic crystals," Progress In Electromagnetics Research, Vol. 41, 185-209, 2003.        Google Scholar

8. Hao, K., et al. "Design of one-dimensional composite photonic crystal with high infrared reflectivity and low microwave re ectivity," Optik, Vol. 216, 164794, 2020, doi: 10.1016/j.ijleo.2020.164794.        Google Scholar

9. Zamudio-Lara, A., et al. "Characterization of metal-dielectric photonic crystals," Opt. Mater., Vol. 29, No. 1, 60-64, Oct. 2006, doi: 10.1016/j.optmat.2006.03.026.        Google Scholar

10. Alejo-Molina, A., D. L. Romero-Antequera, and J. J. Sanchez-Mondragon, "Localization and characterization of the metallic band gaps in a ternary metallo-dielectric photonic crystal," Opt. Commun., Vol. 312, 168-174, 2014, doi: 10.1016/j.optcom.2013.09.021.        Google Scholar

11. Jannesari, R., C. Ranacher, C. Consani, T. Grille, and B. Jakoby, "Sensitivity optimization of a photonic crystal ring resonator for gas sensing applications," Sens. Actuators Phys., Vol. 264, 347-351, Sept. 2017, doi: 10.1016/j.sna.2017.08.017.        Google Scholar

12. Barvestani, J., "Omnidirectional narrow bandpass filters based on one-dimensional superconductor-dielectric photonic crystal heterostructors," Phys. B Condens. Matter, Vol. 457, 218-224, 2015, doi: 10.1016/j.physb.2014.10.019.        Google Scholar

13. Wang, X., et al. "Enlargement of omnidirectional total reflection frequency range in one- dimensional photonic crystals by using photonic heterostructures," Appl. Phys. Lett., Vol. 80, No. 23, 4291-4293, 2002, doi: 10.1063/1.1484547.        Google Scholar

14. Wang, Z., C. Guo, and W. Jiang, "Large mode area OmniGuide ber with superconductor-dielectric periodic multilayers cladding," Optik, Vol. 125, No. 22, 6789-6792, Nov. 2014, doi: 10.1016/j.ijleo.2014.08.079.        Google Scholar

15. Bria, D., B. Djafari-Rouhani, E. H. El Boudouti, A. Mir, A. Akjouj, and A. Nougaoui, "Omnidirectional optical mirror in a cladded-superlattice structure," J. Appl. Phys., Vol. 91, No. 5, 2569-2572, 2002, doi: 10.1063/1.1433188.        Google Scholar

16. Srivastava, R., S. Pati, and S. P. Ojha, "Enhancement of omnidirectional reflection in photonic crystal heterostructures," Progress In Electromagnetics Research B, Vol. 1, 197-208, 2008.        Google Scholar

17. Doghmosh, N., S. A. Taya, A. Upadhyay, M. M. Olaimat, and I. Colak, "Enhancement of optical visible wavelength region selective re ector for photovoltaic cell applications using a ternary photonic crystal," Optik, Vol. 243, 167491, Oct. 2021, doi: 10.1016/j.ijleo.2021.167491.        Google Scholar

18. Castillo-Gallardo, V., L. E. Puente-Diaz, D. Ariza-Flores, H. Perez-Aguilar, W. L. Mochan, and V. Agarwal, "Optimization of wide-band quasi-omnidirectional 1-D photonic structures," Opt. Mater., Vol. 117, 111202, 2021, doi: 10.1016/j.optmat.2021.111202.        Google Scholar

19. Xi, J.-Q., et al. "Omnidirectional reflector using nanoporous SiO2 as a low-refractive-index material," Opt. Lett., Vol. 30, No. 12, 1518, 2005, doi: 10.1364/OL.30.001518.        Google Scholar

20. Nutku, F. and S. Goksin, "Comparison of omnidirectional reflectivity of quasi-periodic dielectric multilayers," Optik, Vol. 228, 166220, 2021, doi: 10.1016/j.ijleo.2020.166220.        Google Scholar

21. Awasthi, S. K., U. Malaviya, and S. P. Ojha, "Enhancement of omnidirectional total-reflection wavelength range by using one-dimensional ternary photonic bandgap material," J. Opt. Soc. Am. B, Vol. 23, No. 12, 2566, 2006, doi: 10.1364/JOSAB.23.002566.        Google Scholar

22. Zhang, H.-F., J.-P. Zheng, and Y. Lin, "Enhancement of omnidirectional photonic band gaps in one-dimensional ternary superconductor-dielectric photonic crystals," Opt. --- Int. J. Light Electron Opt., Vol. 124, No. 17, 2858-2863, Sept. 2013, doi: 10.1016/j.ijleo.2012.08.060.        Google Scholar

23. Temelkuran, B., E. L. Thomas, J. D. Joannopoulos, and Y. Fink, "Low-loss infrared dielectric material system for broadband dual-rage omnidirectional reflectivity," Opt. Lett., Vol. 26, No. 17, 1370, Sept. 2001, doi: 10.1364/OL.26.001370.        Google Scholar

24. Park, Y., Y.-G. Roh, C.-O. Cho, H. Jeon, M. G. Sung, and J. C. Woo, "GaAs-based near-infrared omnidirectional reflector," Appl. Phys. Lett., Vol. 82, No. 17, 2770-2772, 2003, doi: 10.1063/1.1569045.        Google Scholar

25. Lin, W., G. P. Wang, and S. Zhang, "Design and fabrication of omnidirectional reflectors in the visible range," J. Mod. Opt., Vol. 52, No. 8, 1155-1160, 2005, doi: 10.1080/09500340512331327606.        Google Scholar

26. Ben Ali, N. and M. Kanzari, "Designing of omni-directional high reflectors by using one-dimensional modi ed hybrid Fibonacci/Cantor band-gap structures at optical telecommunication wavelength band," J. Mod. Opt., Vol. 57, No. 4, 287-294, 2010, doi: 10.1080/09500340903545289.        Google Scholar

27. Deopura, M., C. K. Ullal, B. Temelkuran, and Y. Fink, "Dielectric omnidirectional visible reflector," Opt. Lett., Vol. 26, No. 15, 1197, 2001, doi: 10.1364/OL.26.001197.        Google Scholar

28. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett., Vol. 58, No. 20, 2059-2062, 1987, doi: 10.1103/PhysRevLett.58.2059.        Google Scholar

29. John, S., "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett., Vol. 58, No. 23, 2486-2489, 1987, doi: 10.1103/PhysRevLett.58.2486.        Google Scholar

30. Gharaati, A. and Z. Zare, "The effect of temperature on one-dimensional nanometallic photonic crystals with coupled defects," Pramana, Vol. 88, No. 5, 75, 2017, doi: 10.1007/s12043-017-1380-5.        Google Scholar

31. Malik, J. V., et al. "Effect of temperature on photonic band gaps in semiconductor-based one-dimensional photonic crystal," Adv. Opt. Technol., Vol. 2013, 1-8, 2013, doi: 10.1155/2013/798087.        Google Scholar

32. Soltani, O., J. Zaghdoudi, and M. Kanzari, "Analysis of transmittance properties in 1D hybrid dielectric photonic crystal containing superconducting thin films," Phys. B Condens. Matter, Vol. 538, 62-69, 2018, doi: 10.1016/j.physb.2018.03.017.        Google Scholar

33. Wu, F., M. Chen, Z. Chen, and C. Yin, "Omnidirectional terahertz photonic band gap broaden effect in one-dimensional photonic crystal containing few-layer graphene," Opt. Commun., Vol. 490, 126898, 2021, doi: 10.1016/j.optcom.2021.126898.        Google Scholar

34. Baraket, Z., J. Zaghdoudi, and M. Kanzari, "Investigation of the 1D symmetrical linear graded superconductor-dielectric photonic crystals and its potential applications as an optimized low temperature sensors," Opt. Mater., Vol. 64, 147-151, 2017, doi: 10.1016/j.optmat.2016.12.005.        Google Scholar

35. El-Amassi, D. M., S. A. Taya, and D. Vigneswaran, "Temperature sensor utilizing a ternary photonic crystal with a polymer layer sandwiched between Si and SiO2 layers," J. Theor. Appl. Phys., Vol. 12, No. 4, 293-298, 2018, doi: 10.1007/s40094-018-0308-x.        Google Scholar

36. Abeles, F., "Recherches sur la propagation des ondes electromagnetiques sinusodales dans les milieux strati fies," Ann. Phys., Vol. 12, 706-782, 1950, doi: 10.1051/anphys/195012050706.        Google Scholar

37. Abeles, F., "La determination de l'indice et de l'epaisseur des couches minces transparentes," J. Phys. Radium, Vol. 11, No. 7, 310-314, 1950, doi: 10.1051/jphysrad:01950001107031000.        Google Scholar

38. Ohta, K. and H. Ishida, "Matrix formalism for calculation of electric field intensity of light in strati ed multilayered films," Appl. Opt., Vol. 29, No. 13, 1952, 1990, doi: 10.1364/AO.29.001952.        Google Scholar

39. Habli, O., J. Zaghdoudi, and M. Kanzari, "Effect of the nonlinearity on optical properties of one- dimensional photonic crystal," Progress In Electromagnetics Research M, Vol. 100, 69-79, 2021.        Google Scholar

40. Zaghdoudi, J. and M. Kanzari, "One-dimensional photonic crystal filter using a gradient-index layer," Optik, Vol. 160, 189-196, 2018, doi: 10.1016/j.ijleo.2018.01.129.        Google Scholar

41. Zaghdoudi, J., M. Kanzari, and B. Rezig, "Design of omnidirectional high reflectors for optical telecommunication bands using the deformed quasiperiodic one-dimensional photonic crystals," Proceedings of 2005 7th International Conference Transparent Optical Networks, 2005, Vol. 2, 322-325, Barcelona, Catlonia, Spain, 2005, doi: 10.1109/ICTON.2005.1506163.        Google Scholar

42. Trabelsi, Y., N. B. Ali, and M. Kanzari, "Tunable narrowband optical filters using superconductor/dielectric generalized Thue-Morse photonic crystals," Microelectron. Eng., Vol. 213, 41-46, 2019, doi: 10.1016/j.mee.2019.04.016.        Google Scholar

43. Mouldi, A. and M. Kanzari, "Design of an omnidirectional mirror using one dimensional photonic crystal with graded geometric layers thicknesses," Optik, Vol. 123, No. 2, 125-131, 2012, doi: 10.1016/j.ijleo.2011.03.010.        Google Scholar

44. Holstein, T., "Theory of transport phenomena in an electron-phonon gas," Ann. Phys., Vol. 29, No. 3, 410-535, Oct. 1964, doi: 10.1016/0003-4916(64)90008-9.        Google Scholar

45. Holstein, T., "Optical and infrared volume absorptivity of metals," Phys. Rev., Vol. 96, No. 2, 535-536, Oct. 1954, doi: 10.1103/PhysRev.96.535.        Google Scholar

46. Lawrence, W. E., "Electron-electron scattering in the low-temperature resistivity of the noble metals," Phys. Rev. B, Vol. 13, No. 12, 5316-5319, 1976, doi: 10.1103/PhysRevB.13.5316.        Google Scholar

47. Chiang, H.-P., P. T. Leung, and W. S. Tse, "Optical properties of composite materials at high temperatures," Solid State Commun., Vol. 101, No. 1, 45-50, 1997, doi: 10.1016/S0038-1098(96)00558-3.        Google Scholar

48. Gharaati, A. and Z. Zare, "Modeling of thermal tunable multichannel filter using defective metallic photonic crystals," Opt. Appl., 2017, doi: 10.5277/OA170410.        Google Scholar

49. Zare, Z. and A. Gharaati, "Enhancement of transmission in 1D thermal tunable metallic photonic crystal filter with exponential gradation thickness," Eur. Phys. J. D, Vol. 74, No. 7, 140, 2020, doi: 10.1140/epjd/e2020-10057-0.        Google Scholar

50. Hanson, G. W., "Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene," J. Appl. Phys., Vol. 103, No. 6, 064302, 2008, doi: 10.1063/1.2891452.        Google Scholar

51. Li, Y., L. Qi, J. Yu, Z. Chen, Y. Yao, and X. Liu, "One-dimensional multiband terahertz graphene photonic crystal filters," Opt. Mater. Express, Vol. 7, No. 4, 1228, 2017, doi: 10.1364/OME.7.001228.        Google Scholar

52. Sayem, A. A., Md. M. Rahman, M. R. C. Mahdy, I. Jahangir, and Md. S. Rahman, "Negative refraction with superior transmission in graphene-hexagonal boron nitride (hBN) multilayer hyper crystal," Sci. Rep., Vol. 6, No. 1, 25442, 2016, doi: 10.1038/srep25442.        Google Scholar

53. Xie, X., Y.-J. Liu, L. Ju, J.-J. Hao, and H.-W. Yang, "Study on the spectral selectivity of graphene/superconductor photonic crystals at low temperature," J. Quant. Spectrosc. Radiat. Transf., Vol. 230, 81-85, 2019, doi: 10.1016/j.jqsrt.2019.03.014.        Google Scholar

54. Xiang, Y., X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, "Critical coupling with graphene-based hyperbolic metamaterials," Sci. Rep., Vol. 4, No. 1, 5483, 2015, doi: 10.1038/srep05483.        Google Scholar