1. Joannopoulos, J. D., S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, Princeton University Press, Princeton, New Jersey, 2008.
doi:504 Gateway Time-out
2. Arismar Cerqueira, S., "Recent progress and novel applications of photonic crystal fibers," Rep. Prog. Phys., Vol. 73, No. 2, 024401, 2010, doi: 10.1088/0034-4885/73/2/024401.
doi:The server didn't respond in time. Google Scholar
3. Najafgholinezhad, S. and S. Olyaee, "A photonic crystal biosensor with temperature dependency investigation of micro-cavity resonator," Optik, Vol. 125, No. 21, 6562-6565, Nov. 2014, doi: 10.1016/j.ijleo.2014.08.043.
doi: Google Scholar
4. Liu, D., L. Chen, D. Cao, and F. Liu, "Terahertz metallic photonic crystals integrated with dielectric waveguides," Opt. Commun., Vol. 475, 126197, 2020, doi: 10.1016/j.optcom.2020.126197. Google Scholar
5. Kumar, A., V. Kumar, A. Nautiyal, Kh. S. Singh, and S. P. Ojha, "Optical switch based on nonlinear one dimensional photonic band gap material," Optik, Vol. 145, 473-478, Sept. 2017, doi: 10.1016/j.ijleo.2017.07.062. Google Scholar
6. Zheng, Q.-R., Y.-Q. Fu, and N.-C. Yuan, "Characteristics of planar PBG structures with a cover layer," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 11, 1439-1453, 2006. Google Scholar
7. Ozbay, E., B. Temelkuran, and M. Bayindir, "Microwave applications of photonic crystals," Progress In Electromagnetics Research, Vol. 41, 185-209, 2003. Google Scholar
8. Hao, K., et al. "Design of one-dimensional composite photonic crystal with high infrared reflectivity and low microwave re ectivity," Optik, Vol. 216, 164794, 2020, doi: 10.1016/j.ijleo.2020.164794. Google Scholar
9. Zamudio-Lara, A., et al. "Characterization of metal-dielectric photonic crystals," Opt. Mater., Vol. 29, No. 1, 60-64, Oct. 2006, doi: 10.1016/j.optmat.2006.03.026. Google Scholar
10. Alejo-Molina, A., D. L. Romero-Antequera, and J. J. Sanchez-Mondragon, "Localization and characterization of the metallic band gaps in a ternary metallo-dielectric photonic crystal," Opt. Commun., Vol. 312, 168-174, 2014, doi: 10.1016/j.optcom.2013.09.021. Google Scholar
11. Jannesari, R., C. Ranacher, C. Consani, T. Grille, and B. Jakoby, "Sensitivity optimization of a photonic crystal ring resonator for gas sensing applications," Sens. Actuators Phys., Vol. 264, 347-351, Sept. 2017, doi: 10.1016/j.sna.2017.08.017. Google Scholar
12. Barvestani, J., "Omnidirectional narrow bandpass filters based on one-dimensional superconductor-dielectric photonic crystal heterostructors," Phys. B Condens. Matter, Vol. 457, 218-224, 2015, doi: 10.1016/j.physb.2014.10.019. Google Scholar
13. Wang, X., et al. "Enlargement of omnidirectional total reflection frequency range in one- dimensional photonic crystals by using photonic heterostructures," Appl. Phys. Lett., Vol. 80, No. 23, 4291-4293, 2002, doi: 10.1063/1.1484547. Google Scholar
14. Wang, Z., C. Guo, and W. Jiang, "Large mode area OmniGuide ber with superconductor-dielectric periodic multilayers cladding," Optik, Vol. 125, No. 22, 6789-6792, Nov. 2014, doi: 10.1016/j.ijleo.2014.08.079. Google Scholar
15. Bria, D., B. Djafari-Rouhani, E. H. El Boudouti, A. Mir, A. Akjouj, and A. Nougaoui, "Omnidirectional optical mirror in a cladded-superlattice structure," J. Appl. Phys., Vol. 91, No. 5, 2569-2572, 2002, doi: 10.1063/1.1433188. Google Scholar
16. Srivastava, R., S. Pati, and S. P. Ojha, "Enhancement of omnidirectional reflection in photonic crystal heterostructures," Progress In Electromagnetics Research B, Vol. 1, 197-208, 2008. Google Scholar
17. Doghmosh, N., S. A. Taya, A. Upadhyay, M. M. Olaimat, and I. Colak, "Enhancement of optical visible wavelength region selective re ector for photovoltaic cell applications using a ternary photonic crystal," Optik, Vol. 243, 167491, Oct. 2021, doi: 10.1016/j.ijleo.2021.167491. Google Scholar
18. Castillo-Gallardo, V., L. E. Puente-Diaz, D. Ariza-Flores, H. Perez-Aguilar, W. L. Mochan, and V. Agarwal, "Optimization of wide-band quasi-omnidirectional 1-D photonic structures," Opt. Mater., Vol. 117, 111202, 2021, doi: 10.1016/j.optmat.2021.111202. Google Scholar
19. Xi, J.-Q., et al. "Omnidirectional reflector using nanoporous SiO2 as a low-refractive-index material," Opt. Lett., Vol. 30, No. 12, 1518, 2005, doi: 10.1364/OL.30.001518. Google Scholar
20. Nutku, F. and S. Goksin, "Comparison of omnidirectional reflectivity of quasi-periodic dielectric multilayers," Optik, Vol. 228, 166220, 2021, doi: 10.1016/j.ijleo.2020.166220. Google Scholar
21. Awasthi, S. K., U. Malaviya, and S. P. Ojha, "Enhancement of omnidirectional total-reflection wavelength range by using one-dimensional ternary photonic bandgap material," J. Opt. Soc. Am. B, Vol. 23, No. 12, 2566, 2006, doi: 10.1364/JOSAB.23.002566. Google Scholar
22. Zhang, H.-F., J.-P. Zheng, and Y. Lin, "Enhancement of omnidirectional photonic band gaps in one-dimensional ternary superconductor-dielectric photonic crystals," Opt. --- Int. J. Light Electron Opt., Vol. 124, No. 17, 2858-2863, Sept. 2013, doi: 10.1016/j.ijleo.2012.08.060. Google Scholar
23. Temelkuran, B., E. L. Thomas, J. D. Joannopoulos, and Y. Fink, "Low-loss infrared dielectric material system for broadband dual-rage omnidirectional reflectivity," Opt. Lett., Vol. 26, No. 17, 1370, Sept. 2001, doi: 10.1364/OL.26.001370. Google Scholar
24. Park, Y., Y.-G. Roh, C.-O. Cho, H. Jeon, M. G. Sung, and J. C. Woo, "GaAs-based near-infrared omnidirectional reflector," Appl. Phys. Lett., Vol. 82, No. 17, 2770-2772, 2003, doi: 10.1063/1.1569045. Google Scholar
25. Lin, W., G. P. Wang, and S. Zhang, "Design and fabrication of omnidirectional reflectors in the visible range," J. Mod. Opt., Vol. 52, No. 8, 1155-1160, 2005, doi: 10.1080/09500340512331327606. Google Scholar
26. Ben Ali, N. and M. Kanzari, "Designing of omni-directional high reflectors by using one-dimensional modied hybrid Fibonacci/Cantor band-gap structures at optical telecommunication wavelength band," J. Mod. Opt., Vol. 57, No. 4, 287-294, 2010, doi: 10.1080/09500340903545289. Google Scholar
27. Deopura, M., C. K. Ullal, B. Temelkuran, and Y. Fink, "Dielectric omnidirectional visible reflector," Opt. Lett., Vol. 26, No. 15, 1197, 2001, doi: 10.1364/OL.26.001197. Google Scholar
28. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett., Vol. 58, No. 20, 2059-2062, 1987, doi: 10.1103/PhysRevLett.58.2059. Google Scholar
29. John, S., "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett., Vol. 58, No. 23, 2486-2489, 1987, doi: 10.1103/PhysRevLett.58.2486. Google Scholar
30. Gharaati, A. and Z. Zare, "The effect of temperature on one-dimensional nanometallic photonic crystals with coupled defects," Pramana, Vol. 88, No. 5, 75, 2017, doi: 10.1007/s12043-017-1380-5. Google Scholar
31. Malik, J. V., et al. "Effect of temperature on photonic band gaps in semiconductor-based one-dimensional photonic crystal," Adv. Opt. Technol., Vol. 2013, 1-8, 2013, doi: 10.1155/2013/798087. Google Scholar
32. Soltani, O., J. Zaghdoudi, and M. Kanzari, "Analysis of transmittance properties in 1D hybrid dielectric photonic crystal containing superconducting thin films," Phys. B Condens. Matter, Vol. 538, 62-69, 2018, doi: 10.1016/j.physb.2018.03.017. Google Scholar
33. Wu, F., M. Chen, Z. Chen, and C. Yin, "Omnidirectional terahertz photonic band gap broaden effect in one-dimensional photonic crystal containing few-layer graphene," Opt. Commun., Vol. 490, 126898, 2021, doi: 10.1016/j.optcom.2021.126898. Google Scholar
34. Baraket, Z., J. Zaghdoudi, and M. Kanzari, "Investigation of the 1D symmetrical linear graded superconductor-dielectric photonic crystals and its potential applications as an optimized low temperature sensors," Opt. Mater., Vol. 64, 147-151, 2017, doi: 10.1016/j.optmat.2016.12.005. Google Scholar
35. El-Amassi, D. M., S. A. Taya, and D. Vigneswaran, "Temperature sensor utilizing a ternary photonic crystal with a polymer layer sandwiched between Si and SiO2 layers," J. Theor. Appl. Phys., Vol. 12, No. 4, 293-298, 2018, doi: 10.1007/s40094-018-0308-x. Google Scholar
36. Abeles, F., "Recherches sur la propagation des ondes electromagnetiques sinusodales dans les milieux stratifies," Ann. Phys., Vol. 12, 706-782, 1950, doi: 10.1051/anphys/195012050706. Google Scholar
37. Abeles, F., "La determination de l'indice et de l'epaisseur des couches minces transparentes," J. Phys. Radium, Vol. 11, No. 7, 310-314, 1950, doi: 10.1051/jphysrad:01950001107031000. Google Scholar
38. Ohta, K. and H. Ishida, "Matrix formalism for calculation of electric field intensity of light in stratied multilayered films," Appl. Opt., Vol. 29, No. 13, 1952, 1990, doi: 10.1364/AO.29.001952. Google Scholar
39. Habli, O., J. Zaghdoudi, and M. Kanzari, "Effect of the nonlinearity on optical properties of one- dimensional photonic crystal," Progress In Electromagnetics Research M, Vol. 100, 69-79, 2021. Google Scholar
40. Zaghdoudi, J. and M. Kanzari, "One-dimensional photonic crystal filter using a gradient-index layer," Optik, Vol. 160, 189-196, 2018, doi: 10.1016/j.ijleo.2018.01.129. Google Scholar
41. Zaghdoudi, J., M. Kanzari, and B. Rezig, "Design of omnidirectional high reflectors for optical telecommunication bands using the deformed quasiperiodic one-dimensional photonic crystals," Proceedings of 2005 7th International Conference Transparent Optical Networks, 2005, Vol. 2, 322-325, Barcelona, Catlonia, Spain, 2005, doi: 10.1109/ICTON.2005.1506163. Google Scholar
42. Trabelsi, Y., N. B. Ali, and M. Kanzari, "Tunable narrowband optical filters using superconductor/dielectric generalized Thue-Morse photonic crystals," Microelectron. Eng., Vol. 213, 41-46, 2019, doi: 10.1016/j.mee.2019.04.016. Google Scholar
43. Mouldi, A. and M. Kanzari, "Design of an omnidirectional mirror using one dimensional photonic crystal with graded geometric layers thicknesses," Optik, Vol. 123, No. 2, 125-131, 2012, doi: 10.1016/j.ijleo.2011.03.010. Google Scholar
44. Holstein, T., "Theory of transport phenomena in an electron-phonon gas," Ann. Phys., Vol. 29, No. 3, 410-535, Oct. 1964, doi: 10.1016/0003-4916(64)90008-9. Google Scholar
45. Holstein, T., "Optical and infrared volume absorptivity of metals," Phys. Rev., Vol. 96, No. 2, 535-536, Oct. 1954, doi: 10.1103/PhysRev.96.535. Google Scholar
46. Lawrence, W. E., "Electron-electron scattering in the low-temperature resistivity of the noble metals," Phys. Rev. B, Vol. 13, No. 12, 5316-5319, 1976, doi: 10.1103/PhysRevB.13.5316. Google Scholar
47. Chiang, H.-P., P. T. Leung, and W. S. Tse, "Optical properties of composite materials at high temperatures," Solid State Commun., Vol. 101, No. 1, 45-50, 1997, doi: 10.1016/S0038-1098(96)00558-3. Google Scholar
48. Gharaati, A. and Z. Zare, "Modeling of thermal tunable multichannel filter using defective metallic photonic crystals," Opt. Appl., 2017, doi: 10.5277/OA170410. Google Scholar
49. Zare, Z. and A. Gharaati, "Enhancement of transmission in 1D thermal tunable metallic photonic crystal filter with exponential gradation thickness," Eur. Phys. J. D, Vol. 74, No. 7, 140, 2020, doi: 10.1140/epjd/e2020-10057-0. Google Scholar
50. Hanson, G. W., "Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene," J. Appl. Phys., Vol. 103, No. 6, 064302, 2008, doi: 10.1063/1.2891452. Google Scholar
51. Li, Y., L. Qi, J. Yu, Z. Chen, Y. Yao, and X. Liu, "One-dimensional multiband terahertz graphene photonic crystal filters," Opt. Mater. Express, Vol. 7, No. 4, 1228, 2017, doi: 10.1364/OME.7.001228. Google Scholar
52. Sayem, A. A., Md. M. Rahman, M. R. C. Mahdy, I. Jahangir, and Md. S. Rahman, "Negative refraction with superior transmission in graphene-hexagonal boron nitride (hBN) multilayer hyper crystal," Sci. Rep., Vol. 6, No. 1, 25442, 2016, doi: 10.1038/srep25442. Google Scholar
53. Xie, X., Y.-J. Liu, L. Ju, J.-J. Hao, and H.-W. Yang, "Study on the spectral selectivity of graphene/superconductor photonic crystals at low temperature," J. Quant. Spectrosc. Radiat. Transf., Vol. 230, 81-85, 2019, doi: 10.1016/j.jqsrt.2019.03.014. Google Scholar
54. Xiang, Y., X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, "Critical coupling with graphene-based hyperbolic metamaterials," Sci. Rep., Vol. 4, No. 1, 5483, 2015, doi: 10.1038/srep05483. Google Scholar