1. Wang, M., L. Ren, W. Liu, Y. Shi, and Y. Niu, "Analysis and design of an efficient distance less-sensitive wireless power transfer system," Progress In Electromagnetics Research C, Vol. 106, 199-213, 2020.
doi:10.2528/PIERC20091102 Google Scholar
2. Wang, M., C. Zhou, M. H. Shen, and Y. Y. Shi, "Frequency drift insensitive broadband wireless power transfer system," AEU - Int. J. Electron. Commun., Vol. 117, 153121, 2020.
doi:10.1016/j.aeue.2020.153121 Google Scholar
3. Shi, Y. Y., Y. Fan, Y. Li, L. Yang, and M. Wang, "An efficient broadband slotted rectenna for wireless power transfer at LTE band," IEEE Trans. Antennas Propag., Vol. 67, No. 2, 814-822, 2019.
doi:10.1109/TAP.2018.2882632 Google Scholar
4. Kim, J. G., G. Wei, M. H. Kim, J. Y. Jong, and C. Zhu, "A comprehensive study on composite resonant circuit-based wireless power transfer systems," IEEE Trans. Ind. Electron., Vol. 65, No. 6, 4670-4680, 2018.
doi:10.1109/TIE.2017.2772207 Google Scholar
5. Trivino-Cabrera, A. and J. A. A. Sanchez, "A review on the fundamentals and practical implementation details of strongly coupled magnetic resonant technology for wireless power transfer," Energies, Vol. 11, No. 10, 2844, 2018.
doi:10.3390/en11102844 Google Scholar
6. Liu, H., X. Huang, and L. Tan, "Switching control optimisation strategy of segmented transmitting coils for on-road charging of electrical vehicles," IET Power Electron., Vol. 9, No. 11, 2282-2288, 2016.
doi:10.1049/iet-pel.2015.0778 Google Scholar
7. Mohamed, A. A. S., A. Berzoy, and O. A. Mohammed, "Experimental validation of comprehensive steady-state analytical model of bidirectional WPT system in EVs applications," IEEE Trans. Veh. Technol., Vol. 66, No. 7, 5584-5594, 2017.
doi:10.1109/TVT.2016.2634159 Google Scholar
8. Huang, C. C., C. L. Lin, and Y. K. Wu, "Simultaneous wireless power/data transfer for electric vehicle charging," IEEE Trans. Ind. Electron., Vol. 64, No. 1, 682-690, 2017.
doi:10.1109/TIE.2016.2608765 Google Scholar
9. Liu, M., M. Fu, Y. Wang, and C. Ma, "Battery cell equalization via megahertz multiple-receiver wireless power transfer," IEEE Trans. Power Electron., Vol. 33, No. 5, 4135-4144, 2018.
doi:10.1109/TPEL.2017.2713407 Google Scholar
10. Roshan, Y. M. and E. J. Park, "Design approach for a wireless power transfer system for wristband wearable devices," IET Power Electron., Vol. 10, No. 8, 931-937, 2017.
doi:10.1049/iet-pel.2016.0616 Google Scholar
11. Wang, S. M., Z. Y. Hu, C. C. Rong, C. H. Lu, X. Tao, J. F. Chen, and M. H. Liu, "Optimisation analysis of coil configuration and circuit model for asymmetric wireless power transfer system," IET Microw. Antennas Propag., Vol. 12, No. 7, 1132-1139, 2018.
doi:10.1049/iet-map.2017.0539 Google Scholar
12. Ahn, D. and M. Ghovanloo, "Optimal design of wireless power transmission links for millimeter-sized biomedical implants," IEEE Trans. Biomed. Circuits Syst., Vol. 10, No. 1, 125-137, 2016.
doi:10.1109/TBCAS.2014.2370794 Google Scholar
13. Ibtahim, A. and M. Kiani, "A figure-of-merit for design and optimization of inductive power transmission links for millimeter-sized biomedical implants," IEEE Trans. Biomed. Circuits Syst., Vol. 10, No. 6, 1100-1111, 2016.
doi:10.1109/TBCAS.2016.2515541 Google Scholar
14. Na, K., H. Jang, H. Ma, and F. Bien, "Tracking optimal efficiency of magnetic resonance wireless power transfer system for biomedical capsule endoscopy," IEEE Trans. Microw. Theory Tech., Vol. 63, No. 1, 295-304, 2015.
doi:10.1109/TMTT.2014.2365475 Google Scholar
15. Liu, H., Q. Shao, and X. L. Fang, "Modeling and optimization of class-E amplifier at subnominal condition in a wireless power transfer system for biomedical implants," IEEE Trans. Biomed. Circuits Syst., Vol. 11, No. 1, 35-43, 2017.
doi:10.1109/TBCAS.2016.2538320 Google Scholar
16. Wang, M., J. Feng, Y. Y. Shi, and M. H. Shen, "Demagnetization weakening and magnetic field concentration with ferrite core characterization for efficient wireless power transfer," IEEE Trans. Ind. Electron., Vol. 66, No. 3, 1842-1851, 2019. Google Scholar
17. Shi, Y. Y., Y. M. Zhang, M. H. Shen, Y. Fan, C. Wang, and M. Wang, "Design of a novel receiving structure for wireless power transfer with the enhancement of magnetic coupling," AEU - Int. J. Electron. C, Vol. 95, 236-241, 2018.
doi:10.1016/j.aeue.2018.08.033 Google Scholar
18. Barakat, A., K. Yoshitomi, and R. K. Pokharel, "Design approach for efficient wireless power transfer systems during lateral misalignment," IEEE Trans. Microw. Theory Techn., Vol. 66, No. 9, 4170-4177, 2018.
doi:10.1109/TMTT.2018.2852661 Google Scholar
19. Tran, D. H., V. B. Vu, and W. Choi, "Design of a high-efficiency wireless power transfer system with intermediate coils for the on-board chargers of electric vehicle," IEEE Trans. Power Electron., Vol. 33, No. 1, 175-187, 2018.
doi:10.1109/TPEL.2017.2662067 Google Scholar
20. Zhong, W. X. and S. Y. R. Hui, "Maximum energy efficiency tracking for wireless power transfer systems," IEEE Trans. Power Electron., Vol. 30, No. 7, 4025-4034, 2015.
doi:10.1109/TPEL.2014.2351496 Google Scholar
21. Zhong, W. X., C. Zhang, X. Liu, and S. Y. R. Hui, "A methodology for making a three-coil wireless power transfer system more energy efficient than a two-coil counterpart for extended transfer distance," IEEE Trans. Power Electron., Vol. 30, No. 2, 933-942, 2015.
doi:10.1109/TPEL.2014.2312020 Google Scholar
22. Zhang, J., X. M. Yuan, C. Wang, and Y. He, "Comparative analysis of two-coil and three-coil structures for wireless power transfer," IEEE Trans. Power Electron., Vol. 32, No. 1, 341-352, 2017.
doi:10.1109/TPEL.2016.2526780 Google Scholar
23. Wang, Q. D. and Y. C. Wang, "Power efficiency optimisation of a three-coil wireless power transfer using compensatory reactance," IET Power Electron., Vol. 11, No. 13, 2102-2108, 2018.
doi:10.1049/iet-pel.2018.5378 Google Scholar
24. Moon, S., B. C. Kim, S. Y. Cho, C. H. Ahn, and G. W. Moon, "Analysis and design of a wireless power transfer system with an intermediate coil for high efficiency," IEEE Trans. Ind. Electron., Vol. 61, No. 11, 5861-5870, 2014.
doi:10.1109/TIE.2014.2301762 Google Scholar
25. Kung, M. L. and K. H. Lin, "Dual-band coil module with repeaters for diverse wireless power transfer applications," IEEE Trans. Microw. Theory Techn., Vol. 66, No. 1, 632-645, 2018.
doi:10.1109/TMTT.2017.2711010 Google Scholar
26. Ye, Z. H., Y. Sun, X. Dai, C. S. Tang, Z. H. Wang, and Y. G. Su, "Energy efficiency analysis of U-coil wireless power transfer system," IEEE Trans. Power Electron., Vol. 31, No. 7, 4809-4817, 2016. Google Scholar
27. Zhang, X., Y. Yuan, and Z. Li, "Study of frequency characteristics for three-coil wireless power transfer system with different positions," Progress In Electromagnetics Research M, Vol. 93, 185-196, 2020.
doi:10.2528/PIERM20021002 Google Scholar
28. Johari, R., J. V. Krogmeier, and D. J. Love, "Analysis and practical considerations in implementing multiple transmitters for wireless power transfer via coupled magnetic resonance," IEEE Trans. Ind. Electron., Vol. 61, No. 4, 1774-1783, 2014.
doi:10.1109/TIE.2013.2263780 Google Scholar
29. Liu, D., H. Hu, and S. V. Georgakopoulos, "Misalignment sensitivity of strongly coupled wireless power transfer systems," IEEE Trans. Power Electron., Vol. 32, No. 7, 5509-5519, 2017.
doi:10.1109/TPEL.2016.2605698 Google Scholar