Vol. 110
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-04-29
Analysis of a Three-Coil Wireless Power Transfer System Operated Under Hybrid Resonant Frequency
By
Progress In Electromagnetics Research M, Vol. 110, 73-82, 2022
Abstract
To enhance transmission performance, a novel three-coil wireless power transfer system is proposed in this work. Unlike the traditional system in which three coils are resonant, the coils in the proposed system are hybrid resonant. According to theoretical calculation, it is found that output power is dependent on resonant frequency of the transmitting coil and the relay coil once the receiving coil is set to resonate at the operating frequency. Simulation work is conducted. Under various distance between transmitting coil and relay coil, resonant frequency of the two coils at which the output power is maximized is obtained. Compared with the traditional resonant system, the simulation result shows that output power of the proposed hybrid resonant system is higher especially at smaller distance. For further validation, experiments have been carried out which verify that better performance can be realized with the proposed hybrid resonant system.
Citation
Zhenyang Zhang, and Meng Wang, "Analysis of a Three-Coil Wireless Power Transfer System Operated Under Hybrid Resonant Frequency," Progress In Electromagnetics Research M, Vol. 110, 73-82, 2022.
doi:10.2528/PIERM22031801
References

1. Wang, M., L. Ren, W. Liu, Y. Shi, and Y. Niu, "Analysis and design of an efficient distance less-sensitive wireless power transfer system," Progress In Electromagnetics Research C, Vol. 106, 199-213, 2020.
doi:10.2528/PIERC20091102

2. Wang, M., C. Zhou, M. H. Shen, and Y. Y. Shi, "Frequency drift insensitive broadband wireless power transfer system," AEU - Int. J. Electron. Commun., Vol. 117, 153121, 2020.
doi:10.1016/j.aeue.2020.153121

3. Shi, Y. Y., Y. Fan, Y. Li, L. Yang, and M. Wang, "An efficient broadband slotted rectenna for wireless power transfer at LTE band," IEEE Trans. Antennas Propag., Vol. 67, No. 2, 814-822, 2019.
doi:10.1109/TAP.2018.2882632

4. Kim, J. G., G. Wei, M. H. Kim, J. Y. Jong, and C. Zhu, "A comprehensive study on composite resonant circuit-based wireless power transfer systems," IEEE Trans. Ind. Electron., Vol. 65, No. 6, 4670-4680, 2018.
doi:10.1109/TIE.2017.2772207

5. Trivino-Cabrera, A. and J. A. A. Sanchez, "A review on the fundamentals and practical implementation details of strongly coupled magnetic resonant technology for wireless power transfer," Energies, Vol. 11, No. 10, 2844, 2018.
doi:10.3390/en11102844

6. Liu, H., X. Huang, and L. Tan, "Switching control optimisation strategy of segmented transmitting coils for on-road charging of electrical vehicles," IET Power Electron., Vol. 9, No. 11, 2282-2288, 2016.
doi:10.1049/iet-pel.2015.0778

7. Mohamed, A. A. S., A. Berzoy, and O. A. Mohammed, "Experimental validation of comprehensive steady-state analytical model of bidirectional WPT system in EVs applications," IEEE Trans. Veh. Technol., Vol. 66, No. 7, 5584-5594, 2017.
doi:10.1109/TVT.2016.2634159

8. Huang, C. C., C. L. Lin, and Y. K. Wu, "Simultaneous wireless power/data transfer for electric vehicle charging," IEEE Trans. Ind. Electron., Vol. 64, No. 1, 682-690, 2017.
doi:10.1109/TIE.2016.2608765

9. Liu, M., M. Fu, Y. Wang, and C. Ma, "Battery cell equalization via megahertz multiple-receiver wireless power transfer," IEEE Trans. Power Electron., Vol. 33, No. 5, 4135-4144, 2018.
doi:10.1109/TPEL.2017.2713407

10. Roshan, Y. M. and E. J. Park, "Design approach for a wireless power transfer system for wristband wearable devices," IET Power Electron., Vol. 10, No. 8, 931-937, 2017.
doi:10.1049/iet-pel.2016.0616

11. Wang, S. M., Z. Y. Hu, C. C. Rong, C. H. Lu, X. Tao, J. F. Chen, and M. H. Liu, "Optimisation analysis of coil configuration and circuit model for asymmetric wireless power transfer system," IET Microw. Antennas Propag., Vol. 12, No. 7, 1132-1139, 2018.
doi:10.1049/iet-map.2017.0539

12. Ahn, D. and M. Ghovanloo, "Optimal design of wireless power transmission links for millimeter-sized biomedical implants," IEEE Trans. Biomed. Circuits Syst., Vol. 10, No. 1, 125-137, 2016.
doi:10.1109/TBCAS.2014.2370794

13. Ibtahim, A. and M. Kiani, "A figure-of-merit for design and optimization of inductive power transmission links for millimeter-sized biomedical implants," IEEE Trans. Biomed. Circuits Syst., Vol. 10, No. 6, 1100-1111, 2016.
doi:10.1109/TBCAS.2016.2515541

14. Na, K., H. Jang, H. Ma, and F. Bien, "Tracking optimal efficiency of magnetic resonance wireless power transfer system for biomedical capsule endoscopy," IEEE Trans. Microw. Theory Tech., Vol. 63, No. 1, 295-304, 2015.
doi:10.1109/TMTT.2014.2365475

15. Liu, H., Q. Shao, and X. L. Fang, "Modeling and optimization of class-E amplifier at subnominal condition in a wireless power transfer system for biomedical implants," IEEE Trans. Biomed. Circuits Syst., Vol. 11, No. 1, 35-43, 2017.
doi:10.1109/TBCAS.2016.2538320

16. Wang, M., J. Feng, Y. Y. Shi, and M. H. Shen, "Demagnetization weakening and magnetic field concentration with ferrite core characterization for efficient wireless power transfer," IEEE Trans. Ind. Electron., Vol. 66, No. 3, 1842-1851, 2019.

17. Shi, Y. Y., Y. M. Zhang, M. H. Shen, Y. Fan, C. Wang, and M. Wang, "Design of a novel receiving structure for wireless power transfer with the enhancement of magnetic coupling," AEU - Int. J. Electron. C, Vol. 95, 236-241, 2018.
doi:10.1016/j.aeue.2018.08.033

18. Barakat, A., K. Yoshitomi, and R. K. Pokharel, "Design approach for efficient wireless power transfer systems during lateral misalignment," IEEE Trans. Microw. Theory Techn., Vol. 66, No. 9, 4170-4177, 2018.
doi:10.1109/TMTT.2018.2852661

19. Tran, D. H., V. B. Vu, and W. Choi, "Design of a high-efficiency wireless power transfer system with intermediate coils for the on-board chargers of electric vehicle," IEEE Trans. Power Electron., Vol. 33, No. 1, 175-187, 2018.
doi:10.1109/TPEL.2017.2662067

20. Zhong, W. X. and S. Y. R. Hui, "Maximum energy efficiency tracking for wireless power transfer systems," IEEE Trans. Power Electron., Vol. 30, No. 7, 4025-4034, 2015.
doi:10.1109/TPEL.2014.2351496

21. Zhong, W. X., C. Zhang, X. Liu, and S. Y. R. Hui, "A methodology for making a three-coil wireless power transfer system more energy efficient than a two-coil counterpart for extended transfer distance," IEEE Trans. Power Electron., Vol. 30, No. 2, 933-942, 2015.
doi:10.1109/TPEL.2014.2312020

22. Zhang, J., X. M. Yuan, C. Wang, and Y. He, "Comparative analysis of two-coil and three-coil structures for wireless power transfer," IEEE Trans. Power Electron., Vol. 32, No. 1, 341-352, 2017.
doi:10.1109/TPEL.2016.2526780

23. Wang, Q. D. and Y. C. Wang, "Power efficiency optimisation of a three-coil wireless power transfer using compensatory reactance," IET Power Electron., Vol. 11, No. 13, 2102-2108, 2018.
doi:10.1049/iet-pel.2018.5378

24. Moon, S., B. C. Kim, S. Y. Cho, C. H. Ahn, and G. W. Moon, "Analysis and design of a wireless power transfer system with an intermediate coil for high efficiency," IEEE Trans. Ind. Electron., Vol. 61, No. 11, 5861-5870, 2014.
doi:10.1109/TIE.2014.2301762

25. Kung, M. L. and K. H. Lin, "Dual-band coil module with repeaters for diverse wireless power transfer applications," IEEE Trans. Microw. Theory Techn., Vol. 66, No. 1, 632-645, 2018.
doi:10.1109/TMTT.2017.2711010

26. Ye, Z. H., Y. Sun, X. Dai, C. S. Tang, Z. H. Wang, and Y. G. Su, "Energy efficiency analysis of U-coil wireless power transfer system," IEEE Trans. Power Electron., Vol. 31, No. 7, 4809-4817, 2016.

27. Zhang, X., Y. Yuan, and Z. Li, "Study of frequency characteristics for three-coil wireless power transfer system with different positions," Progress In Electromagnetics Research M, Vol. 93, 185-196, 2020.
doi:10.2528/PIERM20021002

28. Johari, R., J. V. Krogmeier, and D. J. Love, "Analysis and practical considerations in implementing multiple transmitters for wireless power transfer via coupled magnetic resonance," IEEE Trans. Ind. Electron., Vol. 61, No. 4, 1774-1783, 2014.
doi:10.1109/TIE.2013.2263780

29. Liu, D., H. Hu, and S. V. Georgakopoulos, "Misalignment sensitivity of strongly coupled wireless power transfer systems," IEEE Trans. Power Electron., Vol. 32, No. 7, 5509-5519, 2017.
doi:10.1109/TPEL.2016.2605698