1. Ben Salah, H., A. Hocini, M. N. Temmar, and D. Khedrouche, "Design of mid infrared high sensitive metal-insulator-metal plasmonic sensor," Chinese J. Phys., Vol. 61, 86-97, 2019. Google Scholar
2. Gramotnev, D. K. and I. B. Sergey, "Plasmonics beyond the difraction limit," Nature Photonics, Vol. 4, No. 2, 83-91, 2010. Google Scholar
3. Bahri, H., S. Mouetsi, A. Hocini, and H. Ben Salah, "A high sensitive sensor using MIM waveguide coupled with a rectangular cavity with Fano resonance," Opt. Quant. Electron., Vol. 53, 332, 2021. Google Scholar
4. Tavousi, A., M. A. Mansouri-Birjandi, and M. Janfaza, "Graphene nanoribbon assisted refractometer based biosensor for mid-infrared label-free analysis," Plasmonics, Vol. 14, No. 5, 1207-1217, 2019. Google Scholar
5. Huang, Z., L. Wang, B. Sun, M. He, J. Liu, H. Li, and X. Zhai, "A mid-infrared fast-tunable graphene ring resonator based on guided-plasmonic wave resonance on a curved graphene surface," Journal of Optics, Vol. 16, No. 10, 105004, 2014. Google Scholar
6. Han, Z., L. Liu, and Erik, "Ultra-compact directional couplers and Mach Zehnder interferometers employing surface plasmon polaritons," Optics Communications, Vol. 259, No. 2, 690-695, 2006. Google Scholar
7. Fang, Z., Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, G. de Abajo, F. Javier, P. Nordlander, X. Zhu, and N. J. Halas, "Active tunable absorption enhancement with graphene nanodisk arrays," Nano Letters, Vol. 14, No. 1, 299-304, 2014. Google Scholar
8. Gomez, D., S. Juan, and P. Julien, "Graphene-based plasmonic switches at near infrared frequencies," Optics Express, Vol. 21, No. 13, 15490-15504, 2013. Google Scholar
9. Sadeghi, T., T. G. Saeed, and B. Hamed, "Improving the performance of nanostructure multifunctional graphene plasmonic logic gates utilizing coupled-mode theory," Applied Physics B, Vol. 125, No. 10, 189, 2019. Google Scholar
10. Dolatabady, A. and G. Nosrat, "All-optical logic gates in plasmonic metal-insulator-metal nanowaveguide with slot cavity resonator," Journal of Nanophotonics, Vol. 11, No. 2, 026001, 2017. Google Scholar
11. Madadi, Z, K. Abedi, G. Darvish, and M. Khatir, "An infrared narrow-band plasmonic perfect absorber as a sensor," Optik, Vol. 183, 670-676, 2019. Google Scholar
12. Ben Salah, H., A. Hocini, H. Bahri, and N. Melouki, "High sensitivity plasmonic sensor based on metal-insulator-metal waveguide coupled with a notched hexagonal ring resonator and a stub," ECS Journal of Solid State Science and Technology, Vol. 10, No. 8, 081001, 2021. Google Scholar
13. Soref, R., "Mid-infrared photonics in silicon and germanium," Nature Photonics, Vol. 4, No. 8, 495-497, 2010. Google Scholar
14. Singh, V., L. T. Pao, P. Neil, and L. Hongtao, "Mid-infrared materials and devices on a Si platform for optical sensing," Science and Technology of Advanced Materials, Vol. 15, 014603, 2014. Google Scholar
15. Hodgkinson, J. and R. P. Tatam, "Optical gas sensing: A review," Measurement Science and Technology, Vol. 24, No. 1, 012004, 2012. Google Scholar
16. El Shamy, R. S., D. Khalil, and M. A. Swillam, "Mid infrared optical gas sensor using plasmonic Mach-Zehnder interferometer," Sci. Rep., Vol. 10, 1293, 2020. Google Scholar
17. Sharif, M. and A. Swillam, "Metal-Less silicon plasmonic mid-infrared gas sensor," Journal of Nanophotonics, Vol. 10, No. 2, 026025, 2016. Google Scholar
18. Wang, G., H. Lu, X. Liu, Y. Gong, and L. Wang, "Optical bistability in metal-insulator-metal plasmonic waveguide with nanodisk resonator containing Kerr nonlinear medium," Applied Optics, Vol. 50, No. 27, 5287-5290, 2011. Google Scholar
19. Wu, T. S., Y. M. Liu, Z. Y. Yu, Y. W. Peng, C. G. Shu, and H. Ye, "The sensing characteristics of plasmonic waveguide with a ring resonator," Opt. Express, Vol. 22, No. 7, 7669-7677, 2014. Google Scholar
20. Rakhshani, M. R., "Refractive index sensor based on concentric triple racetrack resonators side coupled to metal-insulator-metal waveguide for glucose sensing," Journal of the Optical Society of America B, Vol. 36, No. 10, 2834-2842, 2019. Google Scholar
21. Shi, H., S. Yan, X. Yang, X. Wu, W. Wu, and E. Hua, "A nanosensor based on a metal-insulator-metal bus waveguide with a stub coupled with a racetrack ring resonator," Micromachines, Vol. 12, No. 5, 495, 2021. Google Scholar
22. Chou Chau, Y. F., C. T. Chou Chao, H. J. Huang, N. T. Kumaran, C. M. Lim, and H. P. Chiang, "Ultra-high refractive index sensing structure based on a metal-insulator-metal waveguide-coupled T-shape cavity with metal nanorod defects," Nanomaterials, Vol. 9, 1433, 2019. Google Scholar
23. Chou Chau, Y. F., "Mid-infrared sensing properties of a plasmonic metal-insulator-metal waveguide with a single stub including defects," J. Phys. D: Appl. Phys., Vol. 53, No. 11, 2020. Google Scholar
24. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd Ed., Artech House, Boston, MA, USA, 2005.
25. Zafar, R. and M. Salim, "Enhanced figure of merit in Fano resonance-based plasmonic refractive index sensor," IEEE Sensors Journal, Vol. 15, No. 11, 6313-6317, 2015. Google Scholar
26. Xie, Y., Y. Huang, W. Zhao, W. Xu, and C. He, "A novel plasmonic sensor based on metal-insulator-metal waveguide with side-coupled hexagonal cavity," IEEE Photonics Journal, Vol. 7, No. 2, 1-12, 2015. Google Scholar
27. Hocini, A., H. Ben Salah, D. Khedrouche, and N. Melouki, "A high-sensitive sensor and band-stop filter based on intersected double ring resonators in metal-insulator-metal structure," Optical and Quantum Electronics, Vol. 52, 336-345, 2020. Google Scholar
28. Areed, N. F., M. F. O. Hameed, and S. S. A. Obayya, "Highly sensitive face-shaped label-free photonic crystal refractometer for glucose concentration monitoring," Opt. Quant. Electron., Vol. 49, 1-12, 2017. Google Scholar
29. Sagor, R. H., M. F. Hassan, A. A. Yaseer, E. Surid, and M. I. Ahmed, "Highly sensitive refractive index sensor optimized for blood group sensing utilizing the Fano resonance," Appl. Nanosci., Vol. 11, 521-534, 2021. Google Scholar
30. Jubayer, M. A., H. Rakib, and M. I. Zahurul, "Numerical studies on a plasmonic temperature nanosensor based on a metal-insulator-metal ring resonator structure for optical integrated circuit applications," Photonics and Nanostructures --- Fundamentals and Applications, Vol. 25, 52-57, 2017. Google Scholar
31. Rakhshani, M. and M. Mansouri-Birjandi, "High sensitivity plasmonic refractive index sensing and its application for human blood group identification," Sens. Act. B: Chem., Vol. 249, 168-176, 2017. Google Scholar
32. Sagor, R., M. Hassan, S. Sharmin, T. Adry, and M. Emon, "Numerical investigation of an optimized plasmonic on-chip refractive index sensor for temperature and blood group detection," Results Phys., Vol. 19, 2020. Google Scholar
33. Hassan, M. F., I. Tathfif, M. Radoan, and R. H. Sagor, "A concentric double-ring resonator based plasmonic refractive index sensor with glucose sensing capability," 2020 IEEE Reg. 10 Conf., 91-96, 2020. Google Scholar
34. Butt, M. A., N. L. Kazanskiy, and S. N. Khonina, "Highly integrated plasmonic sensor design for the simultaneous detection of multiple analytes," Curr. Appl. Phys., Vol. 20, 1274-1280, 2020. Google Scholar
35. Chou Chau, Y. F., "Multiple-mode bowtie cavities for refractive index and glucose sensors working in visible and near-infrared wavelength range," Res. Sq., 1-25, 2021. Google Scholar
36. Jung, W. K. and K. M. Byun, "Fabrication of nanoscale plasmonic structures and their applications to photonic devices and biosensors," Biomed. Eng. Lett., Vol. 1, 153-162, 2011. Google Scholar
37. Lee, F. Y., K. H. Fung, T. L. Tang, W. Y. Tam, and C. T. Chan, "Fabrication of gold nano-particle arrays using two-dimensional templates from holographic lithography," Curr. Appl. Phys., Vol. 9, 820-825, 2009, https://doi.org/10.1016/j.cap.2008.07.017. Google Scholar
38. López-Muñoz, G. A., M. C. Estevez, E. C. Peláez-Gutierrez, A. Homs-Corbera, M. C. García- Hernandez, J. I. Imbaud, and L. M. Lechuga, "A label-free nanostructured plasmonic biosensor based on Blu-ray discs with integrated micro uidics for sensitive biodetection," Biosens. Bioelectron., Vol. 96, 260-267, 2017, https://doi.org/10.1016/j.bios.2017.05.020. Google Scholar
39. Kazanskiy, N. L., M. A. Butt, and S. N. Khonina, "Nanodots decorated MIM semi-ring resonator cavity for biochemical sensingapplications," Photonics Nanostructures --- Fundam. Appl., Vol. 42, 100836, 2020, https://doi.org/10.1016/j.photonics.2020.100836. Google Scholar