1. Liu, E., L. Lv, Y. Yi, and P. Xie, "Research on the steady operation optimization model of natural gas pipeline considering the combined operation of air coolers and compressors," IEEE Access, Vol. 7, 83251-83265, 2019, doi: 10.1109/ACCESS.2019.2924515.
doi:10.1109/ACCESS.2019.2924515 Google Scholar
2. Snoussi, J., S. B. Elghali, M. Benbouzid, and M. F. Mimouni, "Optimal sizing of energy storage systems using frequency-separation-based energy management for fuel cell hybrid electric vehicles," IEEE Trans. Veh. Technol., Vol. 67, No. 10, 9337-9346, Oct. 2018.
doi:10.1109/TVT.2018.2863185 Google Scholar
3. Kim, H. J., J. S. Jeong, M. H. Yoon, J. W. Moon, and J. P. Hong, "Simple size determination of permanent-magnet synchronous machines," IEEE Transactions on Industrial Electronics, Vol. 64, No. 10, 7972-7983, Oct. 2017.
doi:10.1109/TIE.2017.2694407 Google Scholar
4. Lim, M. S., S. H. Chai, J. S. Yang, and J. P. Hong, "Design and verification of 150-krpm PMSM based on experiment results of prototype," IEEE Transactions on Industrial Electronics, Vol. 62, No. 12, 7827-7836, Dec. 2015.
doi:10.1109/TIE.2015.2409804 Google Scholar
5. Zhang, F., R. Dai, G. Liu, and T. Cui, "Design of HSIPMM based on multiphysics fields," IET Electric Power Appl., Vol. 12, No. 8, 1098-1103, Sep. 2018.
doi:10.1049/iet-epa.2017.0784 Google Scholar
6. Pfister, P. D. and Y. Perriard, "Very-high-speed slotless permanent-magnet motors: Analytical modeling, optimization, design, and torque measurement methods," IEEE Transactions on Industrial Electronics, Vol. 57, No. 1, 296-303, Jan. 2010.
doi:10.1109/TIE.2009.2027919 Google Scholar
7. Sun, X., Z. Shi, Y. Cai, G. Lei, Y. Guo, and J. Zhu, "Driving-cycle-oriented design optimization of a permanent magnet hub motor drive system for a four-wheel-drive electric vehicle," IEEE Trans. Transp. Electrific., Vol. 6, No. 3, 1115-1125, Sep. 2020.
doi:10.1109/TTE.2020.3009396 Google Scholar
8. Sun, X., M. Wu, G. Lei, Y. Guo, and J. Zhu, "An improved model predictive current control for PMSM drives based on current track circle," IEEE Transactions on Industrial Electronics, Vol. 68, No. 5, 3782-3793, May 2021, doi: 10.1109/TIE.2020.2984433.
doi:10.1109/TIE.2020.2984433 Google Scholar
9. Sun, X., Z. Shi, G. Lei, Y. Guo, and J. Zhu, "Multi-objective design optimization of an IPMSM based on multilevel strategy," IEEE Transactions on Industrial Electronics, Vol. 68, No. 1, 139-148, Jan. 2021, doi: 10.1109/TIE.2020.2965463.
doi:10.1109/TIE.2020.2965463 Google Scholar
10. Sun, X., Z. Shi, and J. Zhu, "Multiobjective design optimization of an IPMSM for EVs based on fuzzy method and sequential taguchi method," IEEE Transactions on Industrial Electronics, Vol. 68, No. 11, 10592-10600, Nov. 2021, doi: 10.1109/TIE.2020.3031534.
doi:10.1109/TIE.2020.3031534 Google Scholar
11. Ahmed, S., D. Tremelling, H. Kim, Z. Zhang, N. Frank, and R. McElveen, "Modeling, simulation and performance evaluation of cage rotor permanent magnet motor fed by variable speed drive," 2016 IEEE Energy Conversion Congress and Exposition (ECCE), 1-6, 2016, doi: 10.1109/ECCE.2016.7855267. Google Scholar
12. Zhou, Y., L. Zhou, B. Hu, et al. "Design and performance analysis of permanent magnet flux-switching motors using segmental permanent magnets," IEICE Electronics Express, Vol. 16, 20190193, 2019.
doi:10.1587/elex.16.20190193 Google Scholar
13. Park, S. H., E.-C. Lee, J.-C. Park, S.-W. Hwang, and M.-S. Lim, "Prediction of mechanical loss for high-power-density PMSM considering eddy current loss of PMs and conductors," IEEE Transactions on Magnetics, Vol. 57, No. 2, 1-5, Feb. 2021, Art no. 6300205, doi: 10.1109/TMAG.2020.3007439. Google Scholar
14. Kim, J. H., D. M. Kim, Y.-H. Jung, and M.-S. Lim, "Design of ultra-high-speed motor for FCEV air compressor considering mechanical properties of rotor materials," IEEE Transactions on Energy Conversion, Vol. 36, No. 4, 2850-2860, Dec. 2021, doi: 10.1109/TEC.2021.3062646.
doi:10.1109/TEC.2021.3062646 Google Scholar
15. Mahmoudi, A., S. Kahourzade, N. A. Rahim, and W. P. Hew, "Design, analysis, and prototyping of an axial- ux permanent magnet motor based on genetic algorithm and finite-element analysis," IEEE Transactions on Magnetics, Vol. 49, No. 4, 1479-1492, Apr. 2013, doi: 10.1109/TMAG.2012.2228213.
doi:10.1109/TMAG.2012.2228213 Google Scholar
16. Ni, S. and U. Schaefer, "Optimization of a spoke-type permanent magnet motor by combination of genetic algorithm and finite element method," 2018 XIII International Conference on Electrical Machines (ICEM), 892-{898, 2018, doi: 10.1109/ICELMACH.2018.8506715.
doi:10.1109/ICELMACH.2018.8506715 Google Scholar
17. Jedryczka, C., L. Knypiński, A. Demenko, and J. K. Sykulski, "Methodology for cage shape optimization of a permanent magnet synchronous motor under line start conditions," IEEE Transactions on Magnetics, Vol. 54, No. 3, 1-4, Mar. 2018, Art no. 8102304, doi: 10.1109/TMAG.2017.2764680.
doi:10.1109/TMAG.2017.2764680 Google Scholar
18. Belahcen, A., F. Martin, M. E.-H. Zaim, E. Dlala, and Z. Kolondzovski, "Combined FE and particle swarm algorithm for optimization of high speed PM synchronous machine," COMPEL-Int. J. Comput. Math. Elect. Electron. Eng., Vol. 34, No. 2, 475-484, 2015.
doi:10.1108/COMPEL-07-2014-0168 Google Scholar
19. Lee, T., M. Seo, Y. Kim, and S. Jung, "Motor design and characteristics comparison of outer-rotor-type BLDC motor and BLAC motor based on numerical analysis," IEEE Transactions on Applied Superconductivity, Vol. 26, No. 4, 1-6, Jun. 2016, Art no. 5205506, doi: 10.1109/TASC.2016.2548079. Google Scholar
20. Aliabad, A. D. and F. Ghoroghchian, "Design and analysis of a two-speed line start synchronous motor: Scheme one," IEEE Transactions on Energy Conversion, Vol. 31, No. 1, 366-372, Mar. 2016, doi: 10.1109/TEC.2015.2481929.
doi:10.1109/TEC.2015.2481929 Google Scholar