1. Tran, D. H., V. B. Vu, and W. Choi, "Design of a high-efficiency wireless power transfer system with intermediate coils for the on-board chargers of electric vehicles," IEEE Transactions on Power Electronics, Vol. 33, No. 1, 175-187, 2017.
doi:10.1109/TPEL.2017.2662067 Google Scholar
2. Qu, X., H. Han, S. C. Wong, C. K. Tse, and W. Chen, "Hybrid IPT topologies with constant current or constant voltage output for battery charging applications," IEEE Transactions on Power Electronics, Vol. 30, No. 11, 6329-6337, 2015.
doi:10.1109/TPEL.2015.2396471 Google Scholar
3. Takasaki, M., Y. Miura, and T. Ise, "Wireless power transfer system for gate power supplies of modular multilevel converters," Power Electronics & Motion Control Conference IEEE, 3183-3190, 2016. Google Scholar
4. Jang, Y. and M. M. Jovanovic, "A contactless electrical energy transmission system forportable- telephone battery chargers," IEEE Transactions on Industrial Electronics, Vol. 50, No. 3, 520-527, 2003.
doi:10.1109/TIE.2003.812472 Google Scholar
5. Kim, S., J. S. Ho, and A. Poon, "Wireless power transfer to miniature implants: Transmitter optimization," IEEE Transactions on Antennas & Propagation, Vol. 60, No. 10, 4838-4845, 2012.
doi:10.1109/TAP.2012.2207341 Google Scholar
6. Campi, T., S. Cruciani, Palandrani, V. De Santis, A. Hirata, and M. Feliziani, "Wireless power transfer charging system for AIMDs and pacemakers," IEEE Transactions on Microwave Theory & Techniques, Vol. 24, No. 2, 633-642, 2016.
doi:10.1109/TMTT.2015.2511011 Google Scholar
7. Kim, D., J. Park, B. Park, and Y. Shin, "Propulsion and rotation of microrobot based on a force on a magnetic material in a time-varying magnetic field using a wireless power transfer system," IEEE Transactions on Magnetics, Vol. 56, No. 1, 1-5, 2019.
doi:10.1109/TMAG.2019.2948065 Google Scholar
8. Mutashar Abbas, S., M. A. Hannan, S. A. Samad, et al. "Design of spiral clrcular coils in wet and drytissue for bio-lmplanted micro-system applications," Progress In Electromagnetics Research M, Vol. 32, 181-200, 2013.
doi:10.2528/PIERM13052707 Google Scholar
9. Xue, M. and Q. X. Yang, "Application status and key issues of wireless power transmission technology," Transactions of China Electrotechnical Society, Vol. 36, No. 8, 1548-1568, 2021. Google Scholar
10. Han, L. and L. Li, "Integrated wireless communications and wireless power transfer: An overview," Physical Communication, Vol. 25, pt. 2, 555-563, 2017. Google Scholar
11. Zhang, X., S. L. Ho, and W. Fu, "Optimal design and analysis of wireless power transfer system coupled with power source," 2015 IEEE International Magnetics Conference (INTERMAG), 2015. Google Scholar
12. Park, J., C. Park, Y. Shin, D. Kim, and B. Park, "Planar multiresonance reactive shield for reducing electromagnetic interference in portable wireless power charging application," Applied Physics Letters, Vol. 114, No. 20, 203902, 2019.
doi:10.1063/1.5097038 Google Scholar
13. Barretto, E., N. Chavannes, and M. Douglas, "Challenges in safety and compliance assessment in wireless power transfer applications using numerical analysis: Guidelines and solutions," European Conference on Antennas & Propagation IEEE, 1-5, 2016. Google Scholar
14. Zhang, B. and X. J. Shu, "Urgent problems and countermeasures for wireless energy transmission technology," Automation of Electric Power Systems, Vol. 43, No. 18, 1-20, 2019. Google Scholar
15. Riehl, P. S., A. Satyamoorthy, H. Akram, Y. C. Yen, J. C. Yang, and B. Juan, "Wireless power systems for mobile devices supporting inductive and resonant operating modes," IEEE Transactions on Microwave Theory & Techniques, Vol. 63, No. 3, 780-790, 2015.
doi:10.1109/TMTT.2015.2398413 Google Scholar
16. Hua, B., I. Yasar, and S. Lei, "Mobile phone mid-range wireless charger development via coupled magnetic resonance," IEEE Transportation Electrification Conference & Expo, 1-8, 2016. Google Scholar
17. Jia, J. L. and X. Q. Yan, "Research tends of magnetic coupling resonant wireless power transfer characteristics," Transactions of China Electrotechnical Society, Vol. 3, No. 20, 4217-4231, Oct. 2020. Google Scholar
18. Fan, X., X. Mo, and X. Zhang, "Overview of research status and application of wireless power transmission technology," Transactions of China Electrotechnical Society, Vol. 34, No. 7, 1353-1380, 2019. Google Scholar
19. Du, Y. P., T. C. Cheng, and A. S. Farag, "Principles of power-frequency magnetic field shielding with flat sheets in long conductors," IEEE Transactions on Electromagnetic Compatibility, Vol. 38, No. 3, 450-459, 1996.
doi:10.1109/15.536075 Google Scholar
20. Chen, K. N. and Z. M. Zhao, "Analysis of the double-layer printed spiral coil for wireless power transfer," Emerging and Selected Topics in Power Electronics, Vol. 1, No. 2, 114-121, 2013.
doi:10.1109/JESTPE.2013.2272696 Google Scholar
21. Li, Z., X. He, and Z. Shu, "The design of coils on printed circuit board for inductive power transfer system," IET Power Electronics, Vol. 11, No. 15, 2515-2522, 2018.
doi:10.1049/iet-pel.2018.5780 Google Scholar
22. Li, J. and D. Costinett, "Analysis and design of a series self-resonant coil for wireless power transfer," 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), 1052-1059, 2018.
doi:10.1109/APEC.2018.8341145 Google Scholar
23. Jeong, S., D.-H. Kim, J. Song, H. Kim, S. Lee, C. Song, J. Lee, J. Song, and J. Kim, "Smartwatch strap wireless power transfer system with exible PCB coil and shielding material," EEE Transactions on Industrial Electronics, Vol. 66, No. 5, 4054-4064, 2018.
doi:10.1109/TIE.2018.2860534 Google Scholar
24. Yi, Z., M. Li, B. Muneer, G. He, and X.-X. Yang, "Self-resonant antisymmetric planar coil for compact inductive power transfer system avoiding compensation circuits," IEEE Transactions on Power Electronics, Vol. 36, No. 5, 5121-5134, 2020.
doi:10.1109/TPEL.2020.3029777 Google Scholar
25. Narayanan, R., "Advances in wireless power coils: The key element in a wireless power charging system," IEEE Power Electronics Magazine, Vol. 2, No. 4, 40-46, 2015.
doi:10.1109/MPEL.2015.2485358 Google Scholar
26. Tang, X., H. Su, and H. Zhang, "Researches of a new coreless printed circuit board planar inductor," Chinese Journal of Electron Devices, Vol. 25, No. 4, 319-323, 2002. Google Scholar