1. Gupta, A. and R. K. Jha, "A survey of 5G network: Architecture and emerging technologies," IEEE Access, Vol. 3, 1206-1232, 2015.
doi:10.1109/ACCESS.2015.2461602 Google Scholar
2. Arya, A. K., S. J. Kim, S. Park, D.-H. Kim, R. S. Hassan, K. Ko, and S. Kim, "Shark-fin antenna for railway communications in LTE-R, LTE, and lower 5G frequency bands," Progress In Electromagnetics Research, Vol. 167, 83-94, 2020.
doi:10.2528/PIER20040201 Google Scholar
3. Zhang, L., S. Gao, Q. Luo, P. R. Young, W. Li, and Q. Li, "Inverted-S antenna with wideband circular polarization and wide axial ratio beamwidth," IEEE Trans. Antennas Propag., Vol. 65, No. 4, 1740-1748, Apr. 2017.
doi:10.1109/TAP.2016.2628714 Google Scholar
4. Beigmohammadi, G., C. Ghobadi, J. Nourinia, and M. Ojaroudi, "Small square slot antenna with circular polarisation characteristics for WLAN/WiMAX applications," Electronics Letters, Vol. 46, No. 10, 672-673, 2010.
doi:10.1049/el.2010.0623 Google Scholar
5. Ko, S. T., B. C. Park, and J. H. Lee, "Dual band circularly polarized patchantenna with first positive and negative modes," IEEE Antennas Wireless Propag. Lett., Vol. 12, 1165-1168, Sept. 2013.
doi:10.1109/LAWP.2013.2281320 Google Scholar
6. Cai, T., G. M. Wang, X. F. Zhang, and J. P. Shi, "Low-profile compact circularly-polarized antenna based on fractal metasurface and fractal resonator," IEEE Antennas Wireless Propag. Lett., Vol. 14, 1072-1076, May 2015.
doi:10.1109/LAWP.2015.2394452 Google Scholar
7. Kuhestani, H., M. Rahimi, and Z. Mansouri, "Dual-band counter circularly polarized radiation from a single-arm metamaterial-based spiral antenna," Microwave and Optimal Technology Letters, Vol. 57, 2015. Google Scholar
8. Verma, A., A. K. Singh, and N. Srivastava, "Slot loaded EBG-based metasurface for performance improvement of circularly polarized antenna for WiMAX applications," International Journal of Microwave and Wireless Technologies, Vol. 12, No. 3, 1-9, 2019. Google Scholar
9. Cao, W., X. Lv, Z. Zeng, J. Jin, and H. Liu, "Bandwidth enhanced dual-bandpatch-coupling microstrip antenna with omnidirectional CP and unidirectional CP characteristics," IET Microw. Antennas Propag., Vol. 13, No. 5, 584-590, 2019.
doi:10.1049/iet-map.2018.5427 Google Scholar
10. Tran, H. H., S. X. Ta, and I. Park, "A compact circularly polarized crossed-dipole antenna for an RFID tag," IEEE Antennas Wireless Propag. Lett., Vol. 14, 674-677, Dec. 2014. Google Scholar
11. Lim, S., J. Chen, and C. Cato, "Design of a thin, electrically small, two-element parasitic array with circular polarization," IEEE Antennas Wireless Propag. Lett., Vol. 17, No. 6, 1006-1009, Jun. 2018.
doi:10.1109/LAWP.2018.2829201 Google Scholar
12. Gao, S. S., Q. Luo, and F. Zhu, Circularly Polarized Antennas, Wiley, Hoboken, NJ, USA, 2014.
doi:10.1002/9781118790526
13. Shi, Y. and J. Liu, "A circularly polarized octagon-star-shaped microstrip patch antenna with conical radiation pattern," IEEE Trans. Antennas Propag., Vol. 66, No. 4, 2073-2078, Apr. 2018.
doi:10.1109/TAP.2018.2800801 Google Scholar
14. Yang, W., Y. Pan, S. Zheng, and P. Hu, "A low-profile wideband circularly polarized crossed-dipole antenna," IEEE Antennas Wireless Propag. Lett., Vol. 16, 2126-2129, May 2017.
doi:10.1109/LAWP.2017.2699975 Google Scholar
15. Yang, H. C., X. Y. Liu, Y. Fan, and M. M. Tentzeris, "Flexible circularly polarized antenna with axial ratio bandwidth enhancement for off-body communications," IET Microw. Antennas Propag., Vol. 15, 754-767, 2021.
doi:10.1049/mia2.12081 Google Scholar
16. Le, T. T., H. H. Tran, and A. A. Althuwayb, "Wideband circularly polarized antenna based on a non-uniform metasurface," Applied Sciences, Vol. 10, No. 23, 8652, 2020.
doi:10.3390/app10238652 Google Scholar
17. Guo, Y.-X. and D. C. H. Tan, "Wideband single-feed circularly polarized patch antenna withconical radiation pattern," IEEE Antennas Wireless Propag. Lett., Vol. 8, 924-926, Jul. 2009. Google Scholar
18. Zhang, H., Y. Guo, and G. Wang, "A wideband circularly polarized crossed-slot antenna with stable phase center," IEEE Antennas Wireless Propag. Lett., Vol. 18, No. 5, 941-945, May 2019.
doi:10.1109/LAWP.2019.2906363 Google Scholar
19. Yaseen, R. M., D. K. Naji, and A. M. Shakir, "Optimization design methodology of broadband or multiband antenna for RF energy harvesting applications," Progress In Electromagnetics Research B, Vol. 93, 169-194, 2021.
doi:10.2528/PIERB21070104 Google Scholar
20. Boursianis, D., et al. "Multiband patch antenna design using nature-inspired optimization method," IEEE Open Journal of Antennas and Propagation, Vol. 2, 151-162, 2021.
doi:10.1109/OJAP.2020.3048495 Google Scholar
21. Jabar, A. A. S. A. and D. K. Naji, "Optimization design methodology of miniaturized five-band antenna for RFID, GSM, and WiMAX applications," Progress In Electromagnetics Research B, Vol. 83, 177-201, 2019.
doi:10.2528/PIERB19012905 Google Scholar
22. Moore, M., Z. Iqbal, and S. Lim, "A size-reduced, broadband, bidirectional, circularly polarized antenna for potential application in WLAN, WiMAX, 4G, and 5G frequency bands," Progress In Electromagnetics Research C, Vol. 114, 1-11, 2021.
doi:10.2528/PIERC21051801 Google Scholar
23. Pietrenko-Dabrowska, A. and S. Koziel, "Expedited antenna optimization with numerical derivatives and gradient change tracking," Engineering Computations, Vol. 37, No. 4, 1179-1193, 2020.
doi:10.1108/EC-04-2019-0155 Google Scholar
24. Balanis, C. A., Antenna Theory Analysis and Design, 4th Edition, John Wiley & Sons, 2016.