1. Zaman, W., H. Ahmad, and H. A Mahmood, "Miniaturized meandered printed monopole antenna for triband applications," Microwave and Optical Technology Letters, Vol. 60, No. 5, 1265-1271, 2018.
doi:10.1002/mop.31149 Google Scholar
2. Zhi, R., M. Han, J. Bai, W. Wu, and G. Liu, "Miniature multiband antenna for WLAN and X-band satellite," Progress In Electromagnetics Research Letters, Vol. 75, 13-18, 2018.
doi:10.2528/PIERL18021805 Google Scholar
3. Cui, Y., L. Yang, B. Liu, and R. Li, "Multiband planar antenna for LTE/GSM/UMTS and WLAN/WiMAX handsets," IET Microwaves, Antennas & Propagation, Vol. 10, No. 5, 502-506, 2016.
doi:10.1049/iet-map.2015.0545 Google Scholar
4. Osklang, P., C. Phongcharoenpanich, and P. Akkaraekthalin, "Triband compact printed antenna for 2.4/3.5/5 GHz WLAN/WiMAX applications," International Journal of Antennas and Propagation, Article ID 8094908, 2019. Google Scholar
5. Ahmad, H., W. Zaman, S. Bashir, and M. U. Rahman, "Compact triband slotted printed monopole antenna for WLAN and WiMAX applications," Int. J. RF Microw. Comput. Aided Eng., Vol. 29, 2019. Google Scholar
6. Kunwar, A., A. K. Gautam, and B. K. Kanaujia, "Inverted L-slot triple-band antenna with defected ground structure for WLAN and WiMAX applications," Int. J. Microwave and Wireless Technologies, 1-6, 2015. Google Scholar
7. Jing, J., J. Pang, H. Lin, Z. Qiu, and C.-J. Liu, "A multiband compact low-profile planar antenna based on multiple resonant stubs," Progress In Electromagnetics Research Letters, Vol. 94, 1-7, 2020.
doi:10.2528/PIERL20071104 Google Scholar
8. Ran, X., Z. Yu, T. Xie, Y. Li, X. Wang, and P. Huang, "A novel dual-band binary branch fractal bionic antenna for mobile terminals," International Journal of Antennas and Propagation, Article ID 6109093, 2020. Google Scholar
9. Wang, L., J. Yu, T. Xie, and K. Bi, "A novel multiband fractal antenna for wireless application," International Journal of Antennas and Propagation, Article ID 9926753, 2021. Google Scholar
10. Kaur, A. and P. K. Malik, "Multiband elliptical patch fractal and defected ground structures microstrip patch antenna for wireless applications," Progress In Electromagnetics Research B, Vol. 91, 157-173, 2021.
doi:10.2528/PIERB20102704 Google Scholar
11. Asadallah, F. A., J. Costantine, and Y. Tawk, "A multiband compact reconfigurable PIFA based on nested slots," IEEE Antennas and Wireless Propagation Letters, Vol. 17, 331-334, 2018.
doi:10.1109/LAWP.2017.2788465 Google Scholar
12. Bharadwaj, S. S., D. Sipal, D. Yadav, and S. K. Koul, "A compact tri-band frequency reconfigurable antenna for LTE/Wi-Fi/ITS applications," Progress In Electromagnetics Research M, Vol. 91, 59-67, 2020.
doi:10.2528/PIERM20011904 Google Scholar
13. Singh, P. P., P. K. Goswami, S. K. Sharma, and G. Goswami, "Frequency reconfigurable multiband antenna for IoT applications in WLAN, Wi-MAX, and C-band," Progress In Electromagnetics Research C, Vol. 102, 149-162, 2020.
doi:10.2528/PIERC20022503 Google Scholar
14. Dattatreya, G. and K. K. Naik, "A low volume flexible CPW-fed elliptical-ring with split-triangular patch dual-band antenna," Int. J. RF Microw. Comput. Aided Eng., Vol. 29, 2019. Google Scholar
15. Yazdani, R., M. Yousefi, H. Aliakbarian, H. Oraizi, and G. A. E. Vandenbosch, "Miniaturized triple-band highly transparent antenna," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 2, 712-718, 2020.
doi:10.1109/TAP.2019.2947132 Google Scholar
16. Fu, S., X. Zhao, C. Li, and Z.Wang, "Dual-band and omnidirectional miniaturized planar composite dipole antenna for WLAN applications," Int. J. RF Microw. Comput. Aided Eng., Vol. 29, 2021. Google Scholar
17. Arya, A. K., S. J. Kim, and S. Kim, "A dual-band antenna for LTE-R and 5G lower frequency," Progress In Electromagnetics Research Letters, Vol. 88, 113-119, 2020.
doi:10.2528/PIERL19081502 Google Scholar
18. Swain, B. R. and A. K. Sharma, "An investigation of dual-band dual-square ring (DSR) based microstrip antenna for WiFi/WLAN and 5G-NR wireless applications," Progress In Electromagnetics Research M, Vol. 86, 17-26, 2019.
doi:10.2528/PIERM19060501 Google Scholar
19. Rosaline, S. I. and S. Raghavan, "Design of split ring antennas for WLAN and WiMAX applications," Microwave and Optical Technology Letters, Vol. 58, No. 9, 2117-2122, 2016.
doi:10.1002/mop.29996 Google Scholar
20. Daniel, R. S., R. Pandeeswari, and S. Raghavan, "Dual-band monopole antenna loaded with ELC metamaterial resonator for WiMAX and WLAN applications," Applied Physics A: Materials Science and Processing, Vol. 124, No. 10, 1-7, 2018. Google Scholar
21. Prasad Jones Christydass, S. and N. Gunavathi, "Dual-band complementary split-ring resonator engraved rectangular monopole for GSM and WLAN/WiMAX/5G sub-6 GHz band," Progress In Electromagnetics Research C, Vol. 113, 251-263, 2021.
doi:10.2528/PIERC21052007 Google Scholar
22. Pandeeswari, R., "A compact non-bianisotropic complementary split ring resonator inspired microstrip triple band antenna," Progress In Electromagnetics Research C, Vol. 81, 115-124, 2018.
doi:10.2528/PIERC17103009 Google Scholar
23. Kumar, G. and K. P. Ray, Broadband Microstrip Antennas, Artech House, Norwood, MA, 2003.
24. Ray, K. P., "Design aspects of printed monopole antennas for ultra-wide band applications," International Journal of Antennas and Propagation, Vol. 200, 1-8, 200. Google Scholar
25. Mishra, S. K., R. K. Gupta, and J. Mukherjee, "Effect of substrate material on radiation characteristics of an UWB antenna," Loughborough Antennas & Propagation Conference, 157-160, U.K., 2010. Google Scholar