1. Domnenko, V., B. Küchler, W. Hoppe, J. Preuninger, U. Klostermann, W. Demmerle, M. Bohn, D. Krüger, R. R. H. Kim, and L. E. Tan, "Euv computational lithography using accelerated topographic mask simulation," Design-Process-Technology Co-optimization for Manufacturability XIII, Vol. 10962, 109620O, International Society for Optics and Photonics, 2019. Google Scholar
2. Ku, Y.-S., H.-L. Pang, W.-T. Hsu, and D.-M. Shyu, "Accuracy of diffraction-based overlay metrology using a single array target," Optical Engineering, Vol. 48, No. 12, 123601, 2009. Google Scholar
3. Diebold, A. C., Handbook of Silicon Semiconductor Metrology, CRC Press, 2001.
4. Wang, L., Y. Wang, and X. Zhang, "Embedded metallic focus grating for silicon nitride waveguide with enhanced coupling and directive radiation," Optics Express, Vol. 20, No. 16, 17509-17521, 2012. Google Scholar
5. Dzibrou, D. O., J. J. van der Tol, and M. K. Smit, "Tolerant polarization converter for InGaAsP-InP photonic integrated circuits," Optics Letters, Vol. 38, No. 18, 3482-3484, 2013. Google Scholar
6. Yu, N., P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, "Light propagation with phase discontinuities: Generalized laws of re ection and refraction," Science, Vol. 334, No. 6054, 333-337, 2011. Google Scholar
7. Jahani, S. and Z. Jacob, "All-dielectric metamaterials," Nature Nanotechnology, Vol. 11, No. 1, 23-36, 2016. Google Scholar
8. Shlager, K. L. and J. B. Schneider, "A selective survey of the finite-difference time-domain literature," IEEE Antennas and Propagation Magazine, Vol. 37, No. 4, 39-57, 1995. Google Scholar
9. Larson, M. G. and F. Bengzon, The Finite Element Method: Theory, Implementation, and Applications, Vol. 10, Springer Science & Business Media, 2013.
10. Sancer, M. I., K. Sertel, J. L. Volakis, and P. Van Alstine, "On volume integral equations," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 5, 1488-1495, 2006. Google Scholar
11. Botha, M. M., "Solving the volume integral equations of electromagnetic scattering," Journal of Computational Physics, Vol. 218, No. 1, 141-158, 2006. Google Scholar
12. Ylä-Oijala, P., M. Taskinen, and S. Järvenpää, "Surface integral equation formulations for solving electromagnetic scattering problems with iterative methods," Radio Science, Vol. 40, No. 6, 2005. Google Scholar
13. Dilz, R. J. and M. C. van Beurden, "A domain integral equation approach for simulating two dimensional transverse electric scattering in a layered medium with a Gabor frame discretization," Journal of Computational Physics, Vol. 345, 528-542, 2017. Google Scholar
14. Dilz, R. J., M. G. van Kraaij, and M. C. van Beurden, "2D TM scattering problem for finite dielectric objects in a dielectric stratified medium employing Gabor frames in a domain integral equation," JOSA A, Vol. 34, No. 8, 1315-1321, 2017. Google Scholar
15. Dilz, R. J., M. G. van Kraaij, and M. C. van Beurden, "A 3D spatial spectral integral equation method for electromagnetic scattering from finite objects in a layered medium," Optical and Quantum Electronics, Vol. 50, No. 5, 1-22, 2018. Google Scholar
16. Van Beurden, M. C. and I. D. Setija, "Local normal vector field formulation for periodic scattering problems formulated in the spectral domain," JOSA A, Vol. 34, No. 2, 224-233, 2017. Google Scholar
17. Saad, Y. and M. H. Schultz, "GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems," SIAM Journal on Scientific and Statistical Computing, Vol. 7, No. 3, 856-869, 1986. Google Scholar
18. Fletcher, R., "Conjugate gradient methods for indefinite systems," Numerical Analysis, 73-89, Springer, 1976. Google Scholar
19. Van der Vorst, H., "A fast and smoothly convergent variant of BI-CG for the solution of nonsymmetrical linear systems," SIAM Journal on Scientific and Statistical Computing, Vol. 13, 631-644, 1992. Google Scholar
20. Sleijpen, G. L. and D. R. Fokkema, "BiCGstab (ell) for linear equations involving unsymmetric matrices with complex spectrum," Electronic Transactions on Numerical Analysis, Vol. 1, 11-32, 1993. Google Scholar
21. Sonneveld, P. and M. B. van Gijzen, "IDR (s): A family of simple and fast algorithms for solving large nonsymmetric systems of linear equations," SIAM Journal on Scientific Computing, Vol. 31, No. 2, 1035-1062, 2009. Google Scholar
22. Saad, Y., Iterative Methods for Sparse Linear Systems, SIAM, 2003.
23. Wathen, A. J., "Preconditioning," Acta Numerica, Vol. 24, 2015. Google Scholar
24. Remis, R., "Circulant preconditioners for domain integral equations in electromagnetics," 2012 International Conference on Electromagnetics in Advanced Applications, 337-340, IEEE, 2012. Google Scholar
25. Remis, R., "Preconditioning techniques for domain integral equations," 2013 International Conference on Electromagnetics in Advanced Applications (ICEAA), 235-238, IEEE, 2013. Google Scholar
26. Groth, S. P., A. G. Polimeridis, A. Tambova, and J. K. White, "Circulant preconditioning in the volume integral equation method for silicon photonics," JOSA A, Vol. 36, No. 6, 1079-1088, 2019. Google Scholar
27. Popov, E. and M. Nevière, "Maxwell equations in fourier space: fast-converging formulation for diffraction by arbitrary shaped, periodic, anisotropic media," JOSA A, Vol. 8, No. 11, 2886-289, 2001. Google Scholar
28. Schneider, F., "Approximation of inverses of BTTB matrices,", Master's thesis, Eindhoven University of Technology, 2016. Google Scholar
29. Van Kraaij, M. G. M. M., "Forward diffraction modelling: analysis and application to grating reconstruction,", Ph.D. thesis, Eindhoven University of Technology, 2011. Google Scholar
30. Dilz, R. J., "A spatial spectral domain integral equation solver for electromagnetic scattering in dielectric layered media,", Technische Universiteit Eindhoven, 2017. Google Scholar
31. Feichtinger, H. G. and T. Strohmer, Gabor Analysis and Algorithms: Theory and Applications, Springer Science & Business Media, 2012.
32. Dilz, R. J. and M. C. van Beurden, "The Gabor frame as a discretization for the 2D transverse electric scattering-problem domain integral equation," Progress In Electromagnetics Research, Vol. 69, 117-136, 2016. Google Scholar
33. Dilz, R. J. and M. C. van Beurden, "Fast operations for a Gabor-frame-based integral equation with equidistant sampling," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 1, 82-85, 2017. Google Scholar
34. Li, L., "Use of Fourier series in the analysis of discontinuous periodic structures," JOSA A, Vol. 13, No. 9, 1870-1876, 1996. Google Scholar
35. Morgenshtern, V. I. and H. Bölcskei, "A short course on frame theory,", arXiv preprint arXiv:1104.4300, 2011. Google Scholar
36. Axelsson, O. and V. A. Barker, Finite Element Solution of Boundary Value Problems: Theory and Computation, SIAM, 2001.
37. Chan, T. F., "An optimal circulant preconditioner for Toeplitz systems," SIAM Journal on Scientific and Statistical Computing, Vol. 9, No. 4, 766-771, 1988. Google Scholar
38. Chan, R. H., "Circulant preconditioners for Hermitian Toeplitz systems," SIAM Journal on Matrix Analysis and Applications, Vol. 10, No. 4, 542-550, 1989. Google Scholar
39. Tyrtyshnikov, E. E., "Optimal and superoptimal circulant preconditioners," SIAM Journal on Matrix Analysis and Applications, Vol. 13, No. 2, 459-473, 1992. Google Scholar
40. Chan, R. H., "Toeplitz preconditioners for Toeplitz systems with nonnegative generating functions," SIMA Journal of Numerical Analysis, Vol. 11, No. 3, 333-345, 1991. Google Scholar
41. Chan, R. H. and K.-P. Ng, "Toeplitz preconditioners for Hermitian Toeplitz systems," Linear Algebra and Its Applications, Vol. 190, 181-208, 1993. Google Scholar
42. Noutsos, D. and P. Vassalos, "New band Toeplitz preconditioners for ill-conditioned symmetric positive definite Toeplitz systems," SIAM Journal on Matrix Analysis and Applications, Vol. 23, No. 3, 728-743, 2002. Google Scholar
43. Lin, F.-R., "Preconditioners for block Toeplitz systems based on circulant preconditioners," Numerical Algorithms, Vol. 26, No. 4, 365-379, 2001. Google Scholar
44. Burger, S., L. Zschiedrich, J. Pomplun, and F. Schmidt, "Finite-element based electromagnetic field simulations: Benchmark results for isolated structures,", arXiv preprint arXiv:1310.2732, 2013. Google Scholar