Vol. 123
Latest Volume
All Volumes
PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-08-14
A Normal-Vector-Field-Based Preconditioner for a Spatial Spectral Domain-Integral Equation Method for Multi-Layered Electromagnetic Scattering Problems
By
Progress In Electromagnetics Research C, Vol. 123, 1-16, 2022
Abstract
A normal-vector-field-based block diagonal-preconditioner for the spatial spectral integral method is proposed for an electromagnetic scattering problem with multi-layered medium. This preconditioner has a block-diagonal matrix structure for both 2D TM polarization and 3D cases. Spectral analysis shows that the preconditioned system has a more clustered eigenvalue distribution, compared to the unpreconditioned system. For the cases with high contrast or negative permittivity, numerical experiments illustrate that the preconditioned system requires fewer iterations than the unpreconditioned system. The total computation time is reduced accordingly while the accuracy based on the normal-vector field formulation of the solution is preserved.
Citation
Ligang Sun, Roeland Johannes Dilz, and Martijn Constant van Beurden, "A Normal-Vector-Field-Based Preconditioner for a Spatial Spectral Domain-Integral Equation Method for Multi-Layered Electromagnetic Scattering Problems," Progress In Electromagnetics Research C, Vol. 123, 1-16, 2022.
doi:10.2528/PIERC22051907
References

1. Domnenko, V., B. Küchler, W. Hoppe, J. Preuninger, U. Klostermann, W. Demmerle, M. Bohn, D. Krüger, R. R. H. Kim, and L. E. Tan, "Euv computational lithography using accelerated topographic mask simulation," Design-Process-Technology Co-optimization for Manufacturability XIII, Vol. 10962, 109620O, International Society for Optics and Photonics, 2019.        Google Scholar

2. Ku, Y.-S., H.-L. Pang, W.-T. Hsu, and D.-M. Shyu, "Accuracy of diffraction-based overlay metrology using a single array target," Optical Engineering, Vol. 48, No. 12, 123601, 2009.        Google Scholar

3. Diebold, A. C., Handbook of Silicon Semiconductor Metrology, CRC Press, 2001.

4. Wang, L., Y. Wang, and X. Zhang, "Embedded metallic focus grating for silicon nitride waveguide with enhanced coupling and directive radiation," Optics Express, Vol. 20, No. 16, 17509-17521, 2012.        Google Scholar

5. Dzibrou, D. O., J. J. van der Tol, and M. K. Smit, "Tolerant polarization converter for InGaAsP-InP photonic integrated circuits," Optics Letters, Vol. 38, No. 18, 3482-3484, 2013.        Google Scholar

6. Yu, N., P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, "Light propagation with phase discontinuities: Generalized laws of re ection and refraction," Science, Vol. 334, No. 6054, 333-337, 2011.        Google Scholar

7. Jahani, S. and Z. Jacob, "All-dielectric metamaterials," Nature Nanotechnology, Vol. 11, No. 1, 23-36, 2016.        Google Scholar

8. Shlager, K. L. and J. B. Schneider, "A selective survey of the finite-difference time-domain literature," IEEE Antennas and Propagation Magazine, Vol. 37, No. 4, 39-57, 1995.        Google Scholar

9. Larson, M. G. and F. Bengzon, The Finite Element Method: Theory, Implementation, and Applications, Vol. 10, Springer Science & Business Media, 2013.

10. Sancer, M. I., K. Sertel, J. L. Volakis, and P. Van Alstine, "On volume integral equations," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 5, 1488-1495, 2006.        Google Scholar

11. Botha, M. M., "Solving the volume integral equations of electromagnetic scattering," Journal of Computational Physics, Vol. 218, No. 1, 141-158, 2006.        Google Scholar

12. Ylä-Oijala, P., M. Taskinen, and S. Järvenpää, "Surface integral equation formulations for solving electromagnetic scattering problems with iterative methods," Radio Science, Vol. 40, No. 6, 2005.        Google Scholar

13. Dilz, R. J. and M. C. van Beurden, "A domain integral equation approach for simulating two dimensional transverse electric scattering in a layered medium with a Gabor frame discretization," Journal of Computational Physics, Vol. 345, 528-542, 2017.        Google Scholar

14. Dilz, R. J., M. G. van Kraaij, and M. C. van Beurden, "2D TM scattering problem for finite dielectric objects in a dielectric stratified medium employing Gabor frames in a domain integral equation," JOSA A, Vol. 34, No. 8, 1315-1321, 2017.        Google Scholar

15. Dilz, R. J., M. G. van Kraaij, and M. C. van Beurden, "A 3D spatial spectral integral equation method for electromagnetic scattering from finite objects in a layered medium," Optical and Quantum Electronics, Vol. 50, No. 5, 1-22, 2018.        Google Scholar

16. Van Beurden, M. C. and I. D. Setija, "Local normal vector field formulation for periodic scattering problems formulated in the spectral domain," JOSA A, Vol. 34, No. 2, 224-233, 2017.        Google Scholar

17. Saad, Y. and M. H. Schultz, "GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems," SIAM Journal on Scientific and Statistical Computing, Vol. 7, No. 3, 856-869, 1986.        Google Scholar

18. Fletcher, R., "Conjugate gradient methods for indefinite systems," Numerical Analysis, 73-89, Springer, 1976.        Google Scholar

19. Van der Vorst, H., "A fast and smoothly convergent variant of BI-CG for the solution of nonsymmetrical linear systems," SIAM Journal on Scientific and Statistical Computing, Vol. 13, 631-644, 1992.        Google Scholar

20. Sleijpen, G. L. and D. R. Fokkema, "BiCGstab (ell) for linear equations involving unsymmetric matrices with complex spectrum," Electronic Transactions on Numerical Analysis, Vol. 1, 11-32, 1993.        Google Scholar

21. Sonneveld, P. and M. B. van Gijzen, "IDR (s): A family of simple and fast algorithms for solving large nonsymmetric systems of linear equations," SIAM Journal on Scientific Computing, Vol. 31, No. 2, 1035-1062, 2009.        Google Scholar

22. Saad, Y., Iterative Methods for Sparse Linear Systems, SIAM, 2003.

23. Wathen, A. J., "Preconditioning," Acta Numerica, Vol. 24, 2015.        Google Scholar

24. Remis, R., "Circulant preconditioners for domain integral equations in electromagnetics," 2012 International Conference on Electromagnetics in Advanced Applications, 337-340, IEEE, 2012.        Google Scholar

25. Remis, R., "Preconditioning techniques for domain integral equations," 2013 International Conference on Electromagnetics in Advanced Applications (ICEAA), 235-238, IEEE, 2013.        Google Scholar

26. Groth, S. P., A. G. Polimeridis, A. Tambova, and J. K. White, "Circulant preconditioning in the volume integral equation method for silicon photonics," JOSA A, Vol. 36, No. 6, 1079-1088, 2019.        Google Scholar

27. Popov, E. and M. Nevière, "Maxwell equations in fourier space: fast-converging formulation for diffraction by arbitrary shaped, periodic, anisotropic media," JOSA A, Vol. 8, No. 11, 2886-289, 2001.        Google Scholar

28. Schneider, F., "Approximation of inverses of BTTB matrices,", Master's thesis, Eindhoven University of Technology, 2016.        Google Scholar

29. Van Kraaij, M. G. M. M., "Forward diffraction modelling: analysis and application to grating reconstruction,", Ph.D. thesis, Eindhoven University of Technology, 2011.        Google Scholar

30. Dilz, R. J., "A spatial spectral domain integral equation solver for electromagnetic scattering in dielectric layered media,", Technische Universiteit Eindhoven, 2017.        Google Scholar

31. Feichtinger, H. G. and T. Strohmer, Gabor Analysis and Algorithms: Theory and Applications, Springer Science & Business Media, 2012.

32. Dilz, R. J. and M. C. van Beurden, "The Gabor frame as a discretization for the 2D transverse electric scattering-problem domain integral equation," Progress In Electromagnetics Research, Vol. 69, 117-136, 2016.        Google Scholar

33. Dilz, R. J. and M. C. van Beurden, "Fast operations for a Gabor-frame-based integral equation with equidistant sampling," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 1, 82-85, 2017.        Google Scholar

34. Li, L., "Use of Fourier series in the analysis of discontinuous periodic structures," JOSA A, Vol. 13, No. 9, 1870-1876, 1996.        Google Scholar

35. Morgenshtern, V. I. and H. Bölcskei, "A short course on frame theory,", arXiv preprint arXiv:1104.4300, 2011.        Google Scholar

36. Axelsson, O. and V. A. Barker, Finite Element Solution of Boundary Value Problems: Theory and Computation, SIAM, 2001.

37. Chan, T. F., "An optimal circulant preconditioner for Toeplitz systems," SIAM Journal on Scientific and Statistical Computing, Vol. 9, No. 4, 766-771, 1988.        Google Scholar

38. Chan, R. H., "Circulant preconditioners for Hermitian Toeplitz systems," SIAM Journal on Matrix Analysis and Applications, Vol. 10, No. 4, 542-550, 1989.        Google Scholar

39. Tyrtyshnikov, E. E., "Optimal and superoptimal circulant preconditioners," SIAM Journal on Matrix Analysis and Applications, Vol. 13, No. 2, 459-473, 1992.        Google Scholar

40. Chan, R. H., "Toeplitz preconditioners for Toeplitz systems with nonnegative generating functions," SIMA Journal of Numerical Analysis, Vol. 11, No. 3, 333-345, 1991.        Google Scholar

41. Chan, R. H. and K.-P. Ng, "Toeplitz preconditioners for Hermitian Toeplitz systems," Linear Algebra and Its Applications, Vol. 190, 181-208, 1993.        Google Scholar

42. Noutsos, D. and P. Vassalos, "New band Toeplitz preconditioners for ill-conditioned symmetric positive definite Toeplitz systems," SIAM Journal on Matrix Analysis and Applications, Vol. 23, No. 3, 728-743, 2002.        Google Scholar

43. Lin, F.-R., "Preconditioners for block Toeplitz systems based on circulant preconditioners," Numerical Algorithms, Vol. 26, No. 4, 365-379, 2001.        Google Scholar

44. Burger, S., L. Zschiedrich, J. Pomplun, and F. Schmidt, "Finite-element based electromagnetic field simulations: Benchmark results for isolated structures,", arXiv preprint arXiv:1310.2732, 2013.        Google Scholar