Vol. 121
Latest Volume
All Volumes
PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-07-21
Computational Approach of Designing Magnetfree Nonreciprocal Metamaterial
By
Progress In Electromagnetics Research C, Vol. 121, 197-206, 2022
Abstract
This article aims at discussing computational approach to design magnet-free nonreciprocal metamaterial. Detailed mathematical derivation on Floquet mode analysis is presented for Faraday and Kerr rotation. Non-reciprocity in the designed metasurface is achieved in the presence of biased transistor loaded in the gap of circular ring resonator. Based on the derived mathematical model, co- and cross-polarized components have been extracted, which helps find Faraday and Kerr rotation and compare/contrast the reciprocal and nonreciprocal systems.
Citation
Swadesh Poddar Md. Tanvir Hasan Ragib Shakil Rafi , "Computational Approach of Designing Magnetfree Nonreciprocal Metamaterial," Progress In Electromagnetics Research C, Vol. 121, 197-206, 2022.
doi:10.2528/PIERC22052203
http://www.jpier.org/PIERC/pier.php?paper=22052203
References

1. Cai, W., Y. Fan, Q. Fu, R. Yang, W. Zhu, Y. Zhang, and F. Zhang, "Nonlinearly tunable extraordinary optical transmission in a hybrid metamaterial," Journal of Physics D: Applied Physics, Vol. 55, No. 19, 195106, Feb. 2022.
doi:10.1088/1361-6463/ac5082

2. Caloz, C., A. Alu, S. Tretyakov, D. Sounas, K. Achouri, and Z.-L. Deck-Leger, "Electromagnetic nonreciprocity," Physical Review Applied, Vol. 10, No. 4, 047001, Oct. 2018.
doi:10.1103/PhysRevApplied.10.047001

3. Guo, Z., H. Jiang, and H. Chen, "Zero-index and hyperbolic metacavities: Fundamentals and applications," Journal of Physics D: Applied Physics, Vol. 55, No. 8, 083001, Oct. 2021.
doi:10.1088/1361-6463/ac2e89

4. Guo, Z., X. Wu, S. Ke, L. Dong, F. Deng, H. Jiang, and H. Chen, "Rotation controlled topological edge states in a trimer chain composed of meta-atoms," New Journal of Physics, Vol. 24, No. 6, 063001, Jun. 2022.
doi:10.1088/1367-2630/ac71bd

5. Holmes, A. M., M. Sabbaghi, S. Poddar, S. Pakniyat, and G. W. Hanson, "Experimental realization of topologically protected surface magnon polaritons on ceramic YIG ferrites," 2021 International Conference on Electromagnetics in Advanced Applications (ICEAA), 204-204, 2021.
doi:10.1109/ICEAA52647.2021.9539784

6. Kodera, T. and C. Caloz, "Unidirectional loop metamaterials (ULM) as magnetless artificial ferrimagnetic materials: Principles and applications," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 11, 1943-1947, 2018.
doi:10.1109/LAWP.2018.2851592

7. Kodera, T., D. Sounas, and C. Caloz, "Magnetless nonreciprocal metamaterial (MNM) technology: Application to microwave components," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, 1030-1042, 2013.
doi:10.1109/TMTT.2013.2238246

8. Kodera, T., D. L. Sounas, and C. Caloz, "Switchable magnetless nonreciprocal metamaterial (MNM) and its application to a switchable faraday rotation metasurface," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 1454-1457, 2012.
doi:10.1109/LAWP.2012.2231043

9. Kodera, T. and C. Caloz, "Unidirectional loop metamaterials (ULM) as magnetless arti cial ferrimagnetic materials: Principles and applications," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 11, 1943-1947, Nov. 2018.
doi:10.1109/LAWP.2018.2851592

10. Kodera, T., D. L. Sounas, and C. Caloz, "Artificial faraday rotation using a ring metamaterial structure without static magnetic field," Applied Physics Letters, Vol. 99, No. 3, 031114, 2011.
doi:10.1063/1.3615688

11. Kord, A., D. L. Sounas, and A. Alu, "Microwave nonreciprocity," Proceedings of the IEEE, Vol. 108, No. 10, 1728-1758, 2020.
doi:10.1109/JPROC.2020.3006041

12. Landau, L. and E. Lifshitz, "On the theory of the dispersion of magnetic permeability in ferromagnetic bodies," Phys. Z. Sowjetunion, Vol. 8, 01, 1992.

13. Lax, B., K. Button, and H. Hagger, "Microwave ferrites and ferrimagnetics," Physics Today, Vol. 16, No. 8, 57, 1963.
doi:10.1063/1.3051073

14. Menzel, C., C. Rockstuhl, and F. Lederer, "Advanced Jones calculus for the classification of periodic metamaterials," Phys. Rev. A, Vol. 82, 053811, Nov. 2010.

15. Poddar, S., Design and analysis of fully-electronic magnet-free non-reciprocal metamaterial, 2578, Theses and Dissertations, 2020, https://dc.uwm.edu/etd/2578.

16. Poddar, S., S. Roy, S. Roy, and Md. T. Hasan, "A dual triangular cut resonator patch antenna for WLAN applications," 2015 International Conference on Electrical Electronic Engineering (ICEEE), 237-240, 2015.
doi:10.1109/CEEE.2015.7428266

17. Polder, D., "VIII. On the theory of ferromagnetic resonance," The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Vol. 40, No. 300, 99-115, 1949.
doi:10.1080/14786444908561215

18. Rabus, D. G. and C. Sada, "Ring resonators: Theory and modeling," Integrated Ring Resonators, 3-46, Springer International Publishing, Cham, 2020.

19. Roy, S., M. A. Samad, and S. Podder, "Effect of complementary triangular split ring resonator on microstrip patch antenna," 2015 2nd International Conference on Electrical Information and Communication Technologies (EICT), 353-358, 2015.
doi:10.1109/EICT.2015.7391975

20. Ruesink, F., M.-A. Miri, A. Alu, and E. Verhagen, "Nonreciprocity and magnetic-free isolation based on optomechanical interactions," Nature Communications, Vol. 7, No. 1, 13662, Nov. 2016.
doi:10.1038/ncomms13662

21. Xiao, S., T. Wang, T. Liu, C. Zhou, X. Jiang, and J. Zhang, "Active metamaterials and metadevices: A review," Journal of Physics D: Applied Physics, Vol. 53, No. 50, 503002, Sep. 2020.
doi:10.1088/1361-6463/abaced