1. Takach, A. A., F. M. Mbango, F. Ndagijimana, M. Al-Husseini, and J. Jomaah, "Two-line technique for dielectric material characterization with application in 3D-printing filament electrical parameters extraction," Progress In Electromagnetics Research M, Vol. 85, 195-207, 2019.
doi:10.2528/PIERM19071702 Google Scholar
2. Naik, S., M. Pour, and C. Hill, "Characterization of dielectric properties of non-magnetic materials using superstrate-loaded antennas," Progress In Electromagnetics Research M, Vol. 104, 39-47, 2021.
doi:10.2528/PIERM21071210 Google Scholar
3. Benali, L. A., J. Terhzaz, A. Tribak, and A. M. Sanchez, "2D-FDTD method to estimate the complex permittivity of a multilayer dielectric materials at Ku-band frequencies," Progress In Electromagnetics Research M, Vol. 91, 155-164, 2020.
doi:10.2528/PIERM20020102 Google Scholar
4. Hao, H., D. Wang, and W. Zhu, "A permittivity measurement method based on back propagation neural network by microwave resonator," Progress In Electromagnetics Research C, Vol. 110, 27-38, 2021.
doi:10.2528/PIERC21010706 Google Scholar
5. Karami, M., P. Rezaei, S. Kiani, and R. A. Sadeghzadeh, "Modified planar sensor for measuring dielectric constant of liquid materials," Electronics Letters, Vol. 53, No. 19, 1300-1302, Sept. 2017.
doi:10.1049/el.2017.2481 Google Scholar
6. Ansari, M. A. H., A. K. Jha, Z. Akhter, and M. J. Akhtar, "Multi-band RF planar sensor using complementary split ring resonator for testing of dielectric materials," IEEE Sensors J., Vol. 18, 6596-6606, Aug. 16, 2018. Google Scholar
7. Muhammed Shafi, K. T., A. K. Jha, and M. J. Akhtar, "Improved planar resonant RF sensor for retrieval of permittivity and permeability of materials," IEEE Sensors J., Vol. 17, No. 17, 5479-5486, Sept. 2017.
doi:10.1109/JSEN.2017.2724942 Google Scholar
8. Muhammed Shafi, K. T., M. A. H. Ansari, A. K. Jha, and M. J. Akhtar, "Design of SRR- based microwave sensor for characterization of magnetodielectric substrates," IEEE Microw. Wirel. Components Lett., Vol. 27, No. 5, 524-526, May 2017.
doi:10.1109/LMWC.2017.2690873 Google Scholar
9. Saadat-Safa, M., V. Nayyeri, M. Khanjarian, M. Soleimani, and O. M. Ramahi, "A CSRR-based sensor for full characterization of magneto-dielectric materials," IEEE Trans. Microw. Theory Tech., Vol. 67, No. 2, 806-814, Feb. 2019.
doi:10.1109/TMTT.2018.2882826 Google Scholar
10. Gan, H.-Y., et al. "A CSRR-loaded planar sensor for simultaneously measuring permittivity and permeability," IEEE Microw. Wirel. Components Lett., Vol. 30, No. 2, 219-221, Feb. 2022.
doi:10.1109/LMWC.2019.2957657 Google Scholar
11. Bonache, J., M. Gil, I. Gil, J. Garcia-Garcia, and F. Martin, "On the electrical characteristics of complementary metamaterial resonators," IEEE Microw. Wirel. Components Lett., Vol. 16, No. 10, 543-545, Sept. 2006.
doi:10.1109/LMWC.2006.882400 Google Scholar
12. Gama, A. M. and M. C. Rezende, "Complex permeability and permittivity variation of carbonyl iron rubber in the frequency range of 2 to 18 GHz," J. Aerosp. Technol. Manage., Vol. 2, No. 1, 59-62, Apr. 2010.
doi:10.5028/jatm.2010.02015962 Google Scholar
13. Castro, J., C. Morales, T. Weller, et al. "Synthesis and characterization of low-loss Fe3O4-PDMS magneto-dielectric polymer nanocomposit," 15th IEEE Annual Conference on Wireless and Microwave Technology (WAMICON), 1-5, Tampa, FL, USA, 2014. Google Scholar
14. Alahnomi, R. A., Z. Zakaria, E. Ruslan, S. R. Ab Rashid, and A. A. Mohd Bahar, "High-Q sensor based on symmetrical split ring resonator with spurlines for solids material detection," EEE Sensors J., Vol. 17, No. 9, 2766-2775, May 2017.
doi:10.1109/JSEN.2017.2682266 Google Scholar