Vol. 123
Latest Volume
All Volumes
PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-09-02
A Foam-Based Compact Flexible Wideband Antenna for Healthcare Applications
By
Progress In Electromagnetics Research C, Vol. 123, 197-212, 2022
Abstract
In recent times, the study of flexible wireless devices has attracted ample attention in the fields of biomedicine and healthcare. Biomedical systems are becoming more popular and employed to find harmful elements within human bodies. A portable biomedical device makes use of a contacting or non-contacting way to find tumours inside the human body. In view of this, a compact two-slot hexagonal shape flexible wideband microstrip antenna for healthcare application is presented. The proposed antenna is designed using a low-cost, light-weight, and broadly accessible flexible foam material. The slots incorporated into the geometry have enriched the percentage bandwidth of 106.67% with a total gain of 4.67 dBi. The flexible wideband antenna of dimension 28×26×2 mm3 is fabricated using copper foil. The designed and fabricated antenna operates over the frequency of 2.94 to 9.66 GHz resulting in three different resonating frequencies; 3.8 GHz, 6.7 GHz, and 9.1 GHz. The flexible antenna is tested under different bending conditions and obtains good performance to substantiate flexibility. The Specific Absorption Rate (SAR) analysis is also performed over a three-layer tissue equivalent body model and observes a maximum SAR value of 1.9 W/Kg less than the safety limit of 2 W/Kg for 10 gm of tissue. A good agreement is observed between the simulated and measured results of the proposed antenna for free space and human proximity.
Citation
Kailash Vaijinath Karad, and Vaibhav S. Hendre, "A Foam-Based Compact Flexible Wideband Antenna for Healthcare Applications," Progress In Electromagnetics Research C, Vol. 123, 197-212, 2022.
doi:10.2528/PIERC22061201
References

1. Agiwal, M., A. Roy, and N. Saxena, "Next generation 5G wireless networks: A comprehensive survey," IEEE Communications Surveys & Tutorials, Vol. 18, No. 3, 1617-1655, 2016.        Google Scholar

2. Karad, K. V. and V. S. Hendre, "Review of antenna array for 5G technology using mmwave massive MIMO," Recent Trends in Electronics and Communication, Lecture Notes in Electrical Engineering, Vol. 777, Springer, Singapore, 2020.        Google Scholar

3. Keysight Technologies "Keysight Technologies: The internet of things enabling technologies and solutions for design and test," Application Notes, 2016.        Google Scholar

4. Ali, S. M., C. Sovuthy, M. A. Imran, S. Socheatra, Q. H. Abbasi, and Z. Z. Abidin, "Recent advances of wearable antennas in materials, fabrication methods, designs, and their applications: State-of-the-Art," Micromachines, Vol. 11, No. 10, 888, 2020.        Google Scholar

5. CISCO "CISCO Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2014-2019,", 1-48, 2015.        Google Scholar

6. Paracha, K. N., S. K. A. Rahim, P. J. Soh, and M. Khalily, "Wearable antennas: A review of materials, structures, and innovative features for autonomous communication and sensing," IEEE Access, Vol. 7, 56694-56712, 2019.        Google Scholar

7. Priya, A., A. Kumar, and B. Chauhan, "A review of textile and cloth fabric wearable antennas," Int. J. Comput. Appl., Vol. 116, 1-5, 2015.        Google Scholar

8. Soh, P. J., G. A. E. VandenBosch, M. Mercuri, and D. M.-P. Schreurs, "Wearable wireless health monitoring: Current developments, challenges, and future trends," IEEE Microw. Mag., Vol. 16, 55-70, 2015.        Google Scholar

9. Mahmood, S. N., A. J. Ishak, T. Saeidi, H. Alsariera, S. Alani, A. Ismail, and A. C. Soh, "Recent advances in wearable antenna technologies: A review," Progress In Electromagnetics Research B, Vol. 89, 1-27, 2020.        Google Scholar

10. Badhan, K., "Analysis of different performance parameters of body wearable antenna --- A review," Advances in Wireless and Mobile Communications, Vol. 10, No. 5, 735-745, 2017, ISSN 0973-6972.        Google Scholar

11. Sun, H., Z. Zhang, R. Q. Hu, and Y. Qian, "Wearable communications in 5G: Challenge and enabling technologies," IEEE Veh. Technol. Mag., Vol. 13, 100-109, 2018.        Google Scholar

12. Ashraf, J., A. Jabbar, A. Arif, K. Riaz, M. Zubair, and M. Q. Mehmood, "A textile based wideband wearable antenna," International Bhurban Conference on Applied Sciences and Technologies (IBCAST) 2021, 938-941, 2021.        Google Scholar

13. Ouyang, Y. and W. J. Chappell, "High-frequency properties of electro-textiles for wearable antenna applications," IEEE Trans. Antennas Propag., Vol. 56, 381-389, 2008.        Google Scholar

14. Zhao, B., J. Mao, J. Zhao, H. Yang, and Y. Lian, "The role and challenges of body channel communication in wearable flexible electronics," IEEE Transactions on Biomedical Circuits and Systems, Vol. 14, No. 2, 283-296, 2020.        Google Scholar

15. El Atrash, M., M. A. Abdalla, and H. M. Elhennawy, "A wearable dual-band low profile high gain low SAR antenna AMC-backed for WBAN applications," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 10, 6378-6388, 2019.        Google Scholar

16. Kuang, Y., L. Yao, W. Zhang, D. Zhou, H. Luan, and Y. Qiu, "A novel textile dual-polarized antenna potentially used in body-centric system," 2016 IEEE International Conference on RFID Technology and Applications (RFID-TA), 77-80, 2016.        Google Scholar

17. Simorangkir, R. B. V. B., Y. Yang, L. Matekovits, and K. P. Esselle, "Dual-band dual-mode textile antenna on PDMS substrate for body-centric communications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 677-680, 2017.        Google Scholar

18. Iqbal, A., A. Smida, A. J. Alazemi, M. I. Waly, N. K. Mallat, and S. Kim, "Wideband circularly polarized MIMO antenna for high data wearable biotelemetric devices," IEEE Access, Vol. 8, 17935-17944, 2020.        Google Scholar

19. Smida, A., A. Iqbal, A. J. Alazemi, M. I. Waly, R. Ghayoula, and S. Kim, "Wideband wearable antenna for biomedical telemetry applications," IEEE Access, Vol. 8, 15687-15694, 2020.        Google Scholar

20. Arif, A., M. Zubair, M. Ali, M. U. Khan, and M. Q. Mehmood, "A compact, low-profile fractal antenna for wearable on-body WBAN applications," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 5, 981-985, 2019.        Google Scholar

21. Yan, S., P. J. Soh, and G. A. E. Vandenbosch, "Wearable dual-band magneto-electric dipole antenna for WBAN/WLAN applications," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 9, 4165-4169, Sept. 2015.        Google Scholar

22. Mohd Rais, N. H., P. J. Soh, M. F. A. Malek, and G. A. E. Vandenbosch, "Dual-band suspended-plate wearable textile antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 583-586, 2013.        Google Scholar

23. Genovesi, S., F. Costa, F. Fanciulli, and A. Monorchio, "Wearable inkjet-printed wideband antenna by using miniaturized AMC for sub-GHz applications," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1927-1930, 2016.        Google Scholar

24. Sabban, A., "New wideband printed antennas for medical applications," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 1, 84-91, Jan. 2013.        Google Scholar

25. Zhang, K., Z. H. Jiang, W. Hong, and D. H. Werner, "A low-profile and wideband triple-mode antenna for wireless body area network concurrent on-/off-body communications," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 3, 1982-1994, Mar. 2022.        Google Scholar

26. Bhattachaijee, S., S. Teja, S. R. B. Chaudhuri, and M. Mitra, "Wearable triangular patch antenna for ON/OFF body communication," 2017 IEEE Applied Electromagnetics Conference (AEMC), 1-2, 2017.        Google Scholar

27. Shanmuganantham, T., K. Balamanikandan, and S. Raghavan, "CPW-fed slot antenna for wideband applications," International Journal of Antennas and Propagation, Vol. 2008, Article ID 379247, 4 pages, 2008.        Google Scholar

28. Gao, G., C. Yang, B. Hu, R. Zhang, and S. Wang, "A wide-bandwidth wearable all-textile PIFA with dual resonance modes for 5 GHz WLAN applications," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 6, 4206-4211, Jun. 2019.        Google Scholar

29. Scarpello, M. L., I. Kazani, C. Hertleer, H. Rogier, and D. Vande Ginste, "Stability and efficiency of screen-printed wearable and washable antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 838-841, 2012.        Google Scholar

30. Sun, L., M. He, J. Hu, Y. Zhu, and H. Chen, "A butterfly-shaped wideband microstrip patch antenna for wireless communication," International Journal of Antennas and Propagation, Vol. 2015, Article ID 328208, 8 pages, 2015.        Google Scholar

31. Ray, K. P. and M. D. Pandey, "Resonance frequency of hexagonal and half hexagonal Microstrip antennas," Microwave and Optical Technology Letters, Vol. 51, No. 2, 448-452, 2009.        Google Scholar

32. Atanasova, G. and N. Atanasov, "Small antennas for wearable sensor networks: Impact of the electromagnetic properties of the textiles on antenna performance," Sensors, Vol. 20, No. 18, 5157, 2020.        Google Scholar

33. Hatte, J. and V. Hendre, "Dwindle coupled loop antenna system for 5G communication applications," J. Commun. Technol. Electron., Vol. 66, S100-S108, 2021.        Google Scholar

34. Joshi, M. P., J. G. Joshi, and S. S. Pattnaik, "Hexagonal slotted wearable microstrip patch antenna for body area network," 2019 IEEE Pune Section International Conference (PuneCon), 1-4, 2019.        Google Scholar

35. Joshi, J. G., S. S. Pattnaik, and S. Devi, "Metamaterial embedded wearable rectangular microstrip patch antenna," International Journal of Antennas and Propagation, Vol. 2012, Article ID 974315, 9 pages, 2012.        Google Scholar

36. Tighezza, M., S. K. A. Rahim, and M. T. Islam, "Flexible wideband antenna for 5G applications," Microwave and Optical Technology Letters, Vol. 60, No. 1, 38-44, 2017.        Google Scholar

37. Kumar Naik, K. and D. Gopi, "Flexible CPW-fed split-triangular shaped patch antenna for WiMAX applications," Progress In Electromagnetics Research M, Vol. 70, 157-166, 2018.        Google Scholar

38. Khajeh-Khalili, F. and Y. Khosravi, "A novel wearable wideband antenna for application in wireless medical communication systems with jeans substrate," The Journal of The Textile Institute, 1-7, 2020.        Google Scholar

39. Elias, B. Q. and P. J. Soh, "Design of a wideband spring textile antenna for wearable 5G and IoT applications using characteristic mode analysis," Progress In Electromagnetics Research M, Vol. 112, 177-189, 2022.        Google Scholar

40. Hasgall, P. A., F. Di Gennaro, C. Baumgartner, E. Neufeld, B. Lloyd, M. C. Gosselin, D. Payne, A. Klingenböck, and N. Kuster, "IT'IS Database for thermal and electromagnetic parameters of biological tissues,", Version 4.1, Feb. 22, 2022.        Google Scholar

41., http://niremf.ifac.cnr.it/tissprop/htmlclie/htmlclie.php.        Google Scholar

42. Doddipalli, S., A. Kothari, and P. Peshwe, "A low profile ultrawide band monopole antenna for wearable applications," International Journal of Antennas and Propagation, Vol. 2017, Article ID 7362431, 9 pages, 2017.        Google Scholar