Vol. 125
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-10-15
A Diesel-Electric Hybrid Field Modulation Motor with Bread-Loaf Eccentric Magnetic Pole for Ship Propulsion
By
Progress In Electromagnetics Research C, Vol. 125, 147-159, 2022
Abstract
In order to improve the reliability and continuous navigation of ship propulsion, a diesel-electric hybrid field modulation motor with bread-loaf eccentric magnetic poleis proposed in this paper. The permanent magnet of the inner rotor of the motor adopts a bread-loaf eccentric magnetic pole structure and is embedded and fixed on the iron yoke of the inner rotor. The structure can obtain a sinusoidal air gap magnetic field, to reduce the torque ripple of the motor. In this study, some key parameters of the motor are optimized by using the optimization strategy of the combination of genetic algorithm and finite element method. In addition, compared with the conventional magnetic field modulation motor with surface mounted permanent magnet, the motor has a stronger rotor structure. The back-EMF, torque and loss of the motor are calculated. The proposed motor has good sinusoidal back-EMF, less loss, and better stability. Finally, the working modes of the motor in the diesel-electric hybrid ship propulsion system are mainly diesel internal combustion engine driving mode, electric propulsion mode, and hybrid propulsion mode. The system can improve the reliability and continuous navigation of the ship propulsion system.
Citation
Weizhao Tang, Libing Jing, and Lianhua Zheng, "A Diesel-Electric Hybrid Field Modulation Motor with Bread-Loaf Eccentric Magnetic Pole for Ship Propulsion," Progress In Electromagnetics Research C, Vol. 125, 147-159, 2022.
doi:10.2528/PIERC22061602
References

1. Ojaghlu, P. and A. Vahedi, "Specification and design of ring winding axial flux motor for rim-driven thruster of ship electric propulsion," IEEE Trans. Veh. Technol., Vol. 68, No. 2, 1318-1326, Feb. 2019.
doi:10.1109/TVT.2018.2888841

2. Nam, G., H. Sung, C. Kim, M. Park, and I. Yu, "Design and characteristic analysis of a 1MW superconducting motor for ship propulsions," IEEE Trans. Appl. Supercond., Vol. 29, No. 5, 1-5, Aug. 2019.
doi:10.1109/TASC.2019.2902872

3. Zhao, H., C. Liu, Z. Dong, R. Huang, and X. Li, "Design and optimization of a magnetic-geared direct-drive machine with V-shaped permanent magnets for ship propulsion," IEEE Trans. Transport Electrific, Vol. 8, No. 2, 1619-1633, Jun. 2022.
doi:10.1109/TTE.2021.3124891

4. Qiao, M., C. Jiang, Y. Zhu, and G. Li, "Research on design method and electromagnetic vibration of six-phase fractional-slot concentrated-winding PM motor suitable for ship propulsion," IEEE Access, Vol. 4, 8535-8543, 2016.
doi:10.1109/ACCESS.2016.2636341

5. Banaei, M., M. Rafiei, J. Boudjadar, and M. Khooban, "A comparative analysis of optimal operation scenarios in hybrid emission-free ferry ships," IEEE Trans. Transport Electrific, Vol. 6, No. 1, 318-333, Mar. 2020.
doi:10.1109/TTE.2020.2970674

6. Jing, L., T. Wang, Y. Pan, C. Tan, and R. Qu, "Optimization of dual-flux-modulator magnetic gear with HTS bulks and uneven segment based on GA," IEEE Trans. Appl. Supercond., Vol. 32, No. 6, 1-5, Sept. 2022.

7. Afsari Kashani, S. A., "Design and optimization of coaxial reluctance magnetic gear with different rotor topologies," IEEE Trans. Ind. Electron., Vol. 69, No. 1, 101-109, Jan. 2022.
doi:10.1109/TIE.2021.3053886

8. Jing, L., W. Tang, T. Wang, T. Ben, and R. Qu, "Performance analysis of magnetically geared permanent magnet brushless motor for hybrid electric vehicles," IEEE Trans. Transport Electrific, Vol. 8, No. 2, 2874-2883, Jun. 2022.
doi:10.1109/TTE.2022.3151681

9. Wang, M., C. Tong, Z. Song, J. Liu, and P. Zheng, "Performance analysis of an axial magnetic-field-modulated brushless double-rotor Machine for hybrid electric vehicles," IEEE Trans. Ind. Electron., Vol. 66, No. 1, 806-817, Jan. 2019.
doi:10.1109/TIE.2018.2844810

10. Bai, J., P. Zheng, C. Tong, Z. Song, and Q. Zhao, "Characteristic analysis and verification of the magnetic-field-modulated brushless double-rotor machine," IEEE Trans. Ind. Electron., Vol. 62, No. 7, 4023-4033, Jul. 2015.
doi:10.1109/TIE.2014.2381159

11. Hwang, C. C., L. Y. Lyu, C. T. Liu, and P. L. Li, "Optimal design of an SPM motor using genetic algorithms and taguchi method," IEEE Trans. Magn., Vol. 44, No. 11, 4325-4328, Nov. 2008.
doi:10.1109/TMAG.2008.2001526

12. Ho, S. L., N. Chen, and W. N. Fu, "An optimal design method for the minimization of cogging torques of a permanent magnet motor using FEM and genetic algorithm," IEEE Trans. Appl. Supercond., Vol. 20, No. 3, 861-864, Jun. 2010.
doi:10.1109/TASC.2009.2038717

13. Jolly, L., M. A. Jabbar, and Q. Liu, "Design optimization of permanent magnet motors using response surface methodology and genetic algorithms," IEEE Trans. Magn., Vol. 41, No. 10, 3928-3930, Oct. 2005.
doi:10.1109/TMAG.2005.854966

14. Jo, S., H. Shin, and J. Chang, "Dynamic analysis of surface-mounted permanent magnet type coaxial magnetic gear with damper bar considering magnetic field modulation effect," IEEE Access, Vol. 10, 33616-33627, 2022.
doi:10.1109/ACCESS.2022.3161633

15. Jing, L., J. Gong, J. Chen, Z. Huang, and R. Qu, "A novel coaxial magnetic gear with unequal Halbach arrays and non-uniform air gap," IEEE Trans. Appl. Supercond., Vol. 30, No. 4, 1-5, Jun. 2020.

16. Hua, Y., H. Zhu, M. Gao, and Z. Ji, "Multi-objective optimization design of permanent magnet assisted bearingless synchronous reluctance motor using NSGA-II," IEEE Trans. Ind. Electron., Vol. 68, No. 11, 10477-10487, Nov. 2021.
doi:10.1109/TIE.2020.3037873

17. Zhao, W., Z. Yang, Y. Liu, and X. Wang, "Analysis of a novel surface-mounted permanent magnet motor with hybrid magnets for low cost and low torque pulsation," IEEE Trans. Magn., Vol. 57, No. 6, 1-4, Jun. 2021.
doi:10.1109/TMAG.2021.3077923

18. Zhou, X., X. Zhu, W. Wu, Z. Xiang, Y. Liu, and L. Quan, "Multi-objective optimization design of variable-saliency-ratio PM motor considering driving cycles," IEEE Trans. Ind. Electron., Vol. 68, No. 8, 6516-6526, Aug. 2021.
doi:10.1109/TIE.2020.3007106