Vol. 124
Latest Volume
All Volumes
PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-09-22
Dual Lens Focusing System with in-Lens Polarizer for Automotive Radar Sensors
By
Progress In Electromagnetics Research C, Vol. 124, 155-165, 2022
Abstract
This article presents a circularly polarized (CP) dual lens (DL) antenna with high gain and wide axial ratio (AR) bandwidth for automotive radar applications. Proposed antenna system provides low AR and scan loss over a wide angular range. It consists of a linearly polarized (LP), wide band, aperture coupled planar feed antenna, an extended hemispherical lens and a planoconvex lens with thin parallel plates and air slabs. In-lens polarizer mounted to the flat surface of the planoconvex lens converts LP wave to CP state. Fundamental design rules to obtain CP is defined. A CP DL design in low dielectric permittivity material (εr=3) is introduced. It achieves simulated efficiency that varies between 75 and 82% within the 77-81 GHz automotive radar band. AR is below 2.2 dB for all scan angles up to 25˚. Realized gain at boresight radiation is 25.6 dBic at the center frequency. 0.85 dB scan loss is observed at ±30˚ scan angle. A frequency-scaled prototype has been fabricated by additive manufacturing process with fused deposition modeling, and the concept is proved by the experimental results in 22-28 GHz band.
Citation
Neşem Keskin Nurhan Türker Tokan , "Dual Lens Focusing System with in-Lens Polarizer for Automotive Radar Sensors," Progress In Electromagnetics Research C, Vol. 124, 155-165, 2022.
doi:10.2528/PIERC22062004
http://www.jpier.org/PIERC/pier.php?paper=22062004
References

1. Pi, Z. and F. Khan, "An introduction to millimeter-wave mobile broadband systems," IEEE Commun. Mag., Vol. 49, No. 6, 101-107, Jun. 2011.
doi:10.1109/MCOM.2011.5783993

2. Rappaport, T. S., et al., "Millimeter wave mobile communications for 5G cellular: It will work!," IEEE Access, Vol. 1, 335-349, May 2013.
doi:10.1109/ACCESS.2013.2260813

3. Roh, W., et al., "Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results," IEEE Commun. Mag., Vol. 52, No. 2, 106-113, Feb. 2014.
doi:10.1109/MCOM.2014.6736750

4. Yang, B., Z. Yu, J. Lan, R. Zhang, J. Zhou, and W. Hong, "Digital beamforming-based massive MIMO transceiver for 5G millimeter-wave communications," IEEE Trans. Microw. Theory Techn., Vol. 66, No. 7, 3403-3418, Jul. 2018.
doi:10.1109/TMTT.2018.2829702

5. Campo, M. A., G. Carluccio, D. Blanco, O. Litschke, S. Bruni, and N. Llombart, "Wideband circularly polarized antenna with in-lens polarizer for high-speed communications," IEEE Trans. Antennas Propag., Vol. 69, No. 1, 43-54, Jan. 2021, doi: 10.1109/TAP.2020.3008638.
doi:10.1109/TAP.2020.3008638

6. Hong, W., et al., "Multibeam antenna technologies for 5G wireless communications," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 6231-6249, Dec. 2017.
doi:10.1109/TAP.2017.2712819

7. Wang, C., J. Wu, and Y. Guo, "A 3-D-printed multibeam dual circularly polarized luneburg lens antenna based on quasi-icosahedron models for Ka-band wireless applications," IEEE Trans. Antennas Propag., Vol. 68, No. 8, 5807-5815, Aug. 2020.
doi:10.1109/TAP.2020.2983798

8. Wu, X., G. V. Eleftheriades, and T. E. van Deventer-Perkins, "Design and characterization of single- and multiple-beam mm-Wave circularly polarized substrate lens antennas for wireless communications," IEEE Trans. Microw. Theory Techn., Vol. 49, No. 3, 431-441, 2001.
doi:10.1109/22.910546

9. Fernandes, C. A., "Shaped-beam antennas," Handbook of Antennas in Wireless Communications, L. Godara, Ed., Ch. 15, CRC Press, New York, 2002.

10. Godi, G., R. Sauleau, and D. Thouroude, "Performance of reduced size substrate lens antennas for millimeter-wave communications," IEEE Trans. Antennas Propag., Vol. 53, No. 4, 1278-1286, Apr. 2005.
doi:10.1109/TAP.2005.844420

11. Costa, J. R., C. A. Fernandes, G. Godi, R. Sauleau, L. Le Coq, and H. Legay, "Compact Ka-band lens antennas for LEO satellites," IEEE Trans. Antennas Propag., Vol. 56, No. 5, 1251-1258, May 2008.
doi:10.1109/TAP.2008.922690

12. Neto, A., "UWB, non-dispersive radiation from the planarly fed leaky lens antenna --- Part 1: Theory and design," IEEE Trans. Antennas Propag., Vol. 58, No. 7, 2238-2247, Jul. 2010.
doi:10.1109/TAP.2010.2048879

13. Nguyen, N. T., N. Delhote, M. Ettorre, D. Baillargeat, L. Le Coq, and R. Sauleau, "Design and characterization of 60-GHz integrated lens antennas fabricated through ceramic stereolithography," IEEE Trans. Antennas Propag., Vol. 58, No. 8, 2757-2762, Aug. 2010.
doi:10.1109/TAP.2010.2050447

14. Nguyen, N. T., R. Sauleau, and L. Le Coq, "Reduced-size double-shell lens antenna with flat-top radiation pattern for indoor communications at millimeter waves," IEEE Trans. Antennas Propag., Vol. 59, No. 6, 2424-2429, Jun. 2011.
doi:10.1109/TAP.2011.2144554

15. Filipovic, D. F., S. S. Gearhart, and G. M. Rebeiz, "Double-slot antennas on extended hemispherical and elliptical silicon dielectric lenses," IEEE Trans. Microw. Theory Techn., Vol. 41, No. 10, 1738-1749, Oct. 1993.
doi:10.1109/22.247919

16. Van Rudd, J. and D. M. Mittleman, "Influence of substrate-lens design in terahertz time-domain spectroscopy," J. Opt. Soc. Am. A, Vol. 19, No. 2, 319-328, 2002.
doi:10.1364/JOSAB.19.000319

17. Fernandes, C., E. B. Lima, and J. R. Costa, "Broadband integrated lens for illuminating reflector antenna with constant aperture efficiency," IEEE Trans. Antennas Propag., Vol. 58, No. 12, 3805-3813, 2010.
doi:10.1109/TAP.2010.2078463

18. Raman, S., N. S. Barker, and G. M. Rebeiz, "A W-band dielectric lens based integrated monopulse radar receiver," IEEE Trans. Microw. Theory Tech., Vol. 46, No. 12, 2308-2316, 1998.
doi:10.1109/22.739216

19. Nguyen, N. T., R. Sauleau, M. Ettorre, and L. Le Coq, "Focal array fed dielectric lenses: An attractive solution for beam reconfiguration at millimeter waves," IEEE Trans. Antennas Propag., Vol. 59, No. 6, 2152-2159, 2011.
doi:10.1109/TAP.2011.2144550

20. Nguyen, N. T., A. V. Boriskin, L. Le Coq, and R. Sauleau, "Improvement of the scanning performance of the extended hemispherical integrated lens antenna using a double lens focusing system," IEEE Trans. Antennas Propag., Vol. 64, No. 8, 3698-3702, Aug. 2016, doi: 10.1109/TAP.2016.2572227.
doi:10.1109/TAP.2016.2572227

21. Yoneda, N., R. Miyazaki, I. Matsumura, and M. Yamato, "A design of novel grooved circular waveguide polarizers," IEEE Trans. Microw. Theory Techn., Vol. 48, No. 12, 2446-2452, Dec. 2000.
doi:10.1109/22.898996

22. Wang, S.-W., C.-H. Chien, C.-L. Wang, and R.-B. Wu, "A circular polarizer designed with a dielectric septum loading," IEEE Trans. Microw. Theory Techn., Vol. 52, No. 7, 1719-172, Jul. 2004.
doi:10.1109/TMTT.2004.830487

23. Letizia, M., B. Fuchs, A. Skrivervik, and J. R. Mosig, "Circularly polarized homogeneous lens antenna system providing multibeam radiation pattern for HAPS," Radio Sci. Bull., Vol. 332, 18-28, Mar. 2010.

24. Cai, Y., Y. Zhang, Z. Qian, W. Cao, and S. Shi, "Compact wideband dual circularly polarized substrate integrated waveguide horn antenna," IEEE Trans. Antennas Propag., Vol. 64, No. 7, 3184-3189, Jul. 2016.
doi:10.1109/TAP.2016.2554627

25. Farooqui, M. F. and A. Shamim, "3-D inkjet-printed helical antenna with integrated lens," IEEE Antennas Wireless Propag. Lett., Vol. 16, No. 8, 800-803, Aug. 2016.

26. Sammeta, R. and D. S. Filipovic, "Improved efficiency lens-loaded cavity-backed transmit sinuous antenna," IEEE Trans. Antennas Propag., Vol. 62, No. 12, 6000-6009, Dec. 2014.
doi:10.1109/TAP.2014.2365232

27. Xue, L. and V. Fusco, "Polarisation insensitive planar dielectric slab waveguide extended hemi-elliptical lens," IET Microw., Antennas Propag., Vol. 2, No. 4, 312-315, Jun. 2008.
doi:10.1049/iet-map:20070194

28. Shi, Z., S. Yang, S.-W. Qu, and Y. Chen, "Circularly polarised planar Luneberg lens antenna for mm-Wave wireless communication," Electron. Lett., Vol. 52, No. 15, 1281-1282, 2016.
doi:10.1049/el.2016.1524

29. Wang, K. X. and H. Wong, "Design of a wideband circularly polarized millimeter-wave antenna with an extended hemispherical lens," IEEE Trans. Antennas Propag., Vol. 66, No. 8, 4303-4308, Aug. 2018.
doi:10.1109/TAP.2018.2841414

30. Ozpinar, H., S. Aksimsek, and N. T. Tokan, "A novel compact, broadband, high gain millimeter-wave antenna for 5G beam steering applications," IEEE Trans. on Vehicular Techn., Vol. 69, No. 3, 2389-2397, Mar. 2020.
doi:10.1109/TVT.2020.2966009

31. Sönmez, N., F. Tokan, and N. Tokan, "Double lens antennas in millimeter-wave automotive radar sensors," Applied Comp. Electromag. Soc. Journal, Vol. 32, 901-907, 2017.

32. Pan, Y. M. and K. W. Leung, "Wideband circularly polarized dielectric bird-nest antenna with conical radiation pattern," IEEE Trans. Antennas Propag., Vol. 61, No. 2, 563-570, Feb. 2013.
doi:10.1109/TAP.2012.2220101

33. Born, M. and E. Wolf, Principles of Optics, 705-708, Pergamon, London, U.K., 1980.

34. Wang, K. X. and H. Wong, "A wideband millimeter-wave circularly polarized antenna with 3-D printed polarizer," IEEE Trans. Antennas Propag., Vol. 65, No. 3, 1038-1046, Mar. 2017.
doi:10.1109/TAP.2016.2647693

35. Alcep, M. and F. Tokan, "Impedance matching technique with perforated, inhomogeneous layers for broadband dielectric lenses," IEEE Sensors Journal, Vol. 21, No. 18, 20018-20026, Sept. 2021.
doi:10.1109/JSEN.2021.3100640