1. Jian, L. N., W. S. Gong, G. Q. Xu, J. N. Liang, and W. X. Zhao, "Integrated magnetic-geared machine with sandwiched armature stator for low-speed large-torque applications," IEEE Trans. Magn., Vol. 48, No. 11, 4184-4187, Nov. 201.
doi:10.1109/TMAG.2012.2198443 Google Scholar
2. Liu, C. T., K. Y. Hung, and C. C. Hwang, "Developments of an efficient analytical scheme for optimal composition designs of tubular linear magnetic-geared machines," IEEE Trans. Magn., Vol. 52, No. 7, Art. No. 8202404, Jul. 2016. Google Scholar
3. Fang, Y. N., X. H. Liang, and M. J. Zuo, "Effect of sliding friction on transient characteristics of a gear transmission under random loading," Proc. 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2551-2555, Banff, AB, Canada, Nov. 2017. Google Scholar
4. Chen, S. Q., J. Y. Zhao, B. W. Li, Z. Xu, and Y. Q. Feng, "Nonlinear dynamic model and governing equations of low speed and high load planetary gear train with respect to friction," Proc. 2011 International Conference on Consumer Electronics, Communications and Networks (CECNet), 3274-3278, Xianning, China, Apr. 2011. Google Scholar
5. Atallah, K. and D. Howe, "A novel high-performance magnetic gear," IEEE Trans. Magn., Vol. 37, No. 4, 2844-2846, Jul. 2001.
doi:10.1109/20.951324 Google Scholar
6. Cooke, G., R. S. Dragan, R. Barrett, D. J. Powell, S. Graham, and K. Atallah, "Magnetically geared propulsion motor for subsea remote operated vehicle," IEEE Trans. Magn., Vol. 58, No. 2, Art. No. 8201005, Feb. 2022. Google Scholar
7. Fu, W. N. and S. L. Ho, "A quantitative comparative analysis of a novel flux-modulated permanent-magnet motor for low-speed drive," IEEE Trans. Magn., Vol. 46, No. 1, 127-134, Jan. 201.
doi:10.1109/TMAG.2009.2030677 Google Scholar
8. Li, J. G. and K. T. Chau, "Performance and cost comparison of permanent-magnet vernier machines," IEEE Trans. Magn., Vol. 22, No. 3, Art. No. 5202304, Jun. 2012. Google Scholar
9. Toba, A. and T. A. Lipo, "Generic torque-maximizing design methodology of surface permanent-magnet vernier machine," IEEE Trans. Ind. Appl., Vol. 36, No. 6, 1539-1546, Nov./Dec. 2000. Google Scholar
10. Zhao, X., S. X. Niu, and W. N. Fu, "Torque component quantification and design guideline for dual permanent magnet vernier machine," IEEE Trans. Magn., Vol. 55, No. 6, Art. No. 8101905, Jun. 2019. Google Scholar
11. Ma, Y., Y. Xiao, J. Wang, and L. Zhou, "Multicriteria optimal Latin hypercube design-based surrogate-assisted design optimization fora permanent-magnet vernier machine," IEEE Trans. Magn., Vol. 58, No. 2, Art. No. 8101205, Feb. 2022. Google Scholar
12. Feng, G. D., C. Y. Lai, M. Kelly, and N. C. Kar, "Dual three-phase PMSM torque modeling and maximum torque per peak current control through optimized harmonic current injection," IEEE Trans. Ind. Electron., Vol. 66, No. 5, 3356-3368, May 2019.
doi:10.1109/TIE.2018.2854550 Google Scholar
13. Lai, C. Y., G. D. Feng, K. L. V. Iyer, K. Mukherjee, and N. C. Kar, "Genetic algorithm-based current optimization for torque ripple reduction of interior PMSMs," IEEE Trans. Ind. Appl., Vol. 53, No. 5, 4493-4503, Sept./Oct. 2017.
doi:10.1109/TIA.2017.2704063 Google Scholar
14. Lin, Q. F., S. X. Niu, and W. N. Fu, "Design and optimization of a dual-permanent-magnet vernier machine with a novel optimization model," IEEE Trans. Magn., Vol. 56, No. 3, Art. No. 7512705, Mar. 2020. Google Scholar
15. Wang, Q. L., F. Zhao, and K. Yang, "Analysis and optimization of the axial electromagnetic forcefor an axial-flux permanent magnet vernier machine," IEEE Trans. Magn., Vol. 57, No. 2, Art. No. 8100605, Feb. 2021. Google Scholar
16. Sorgdrager, A. J., R. J. Wang, and A. J. Grobler, "Multiobjective design of a line-start PM motor using the Taguchi method," IEEE Trans. Ind. Appl., Vol. 54, No. 5, 4167-4176, Sept./Oct. 2018.
doi:10.1109/TIA.2018.2834306 Google Scholar
17. Giurgea, S., D. Fodorean, G. Cirrincione, A. Miraoui, and M. Cirrincione, "Multimodel optimization based on the response surface of the reduced FEM simulation model with application to a PMSM," IEEE Trans. Magn., Vol. 44, No. 9, 2153-2157, Sept. 2008.
doi:10.1109/TMAG.2008.2000497 Google Scholar
18. Shin, P. S., S. H. Woo, Y. L. Zhang, and C. S. Koh, "An application of Latin hypercube sampling strategy for cogging torque reduction of large-scale permanent magnet motor," IEEE Trans. Magn., Vol. 44, No. 11, 4421-4424, Nov. 2008.
doi:10.1109/TMAG.2008.2002479 Google Scholar
19. Sun, X., Z. Shi, and J. Zhu, "Multiobjective design optimization of an IPMSM for EVs based on fuzzy method and sequential Taguchi method," IEEE Trans. Ind. Electron., Vol. 68, No. 11, 10592-10600, Nov. 2021.
doi:10.1109/TIE.2020.3031534 Google Scholar
20. Zhu, G. J., L. N. Li, Y. H. Mei, T. Liu, and M. Xue, "Design and analysis of a self-circulated oil cooling system enclosed in hollow shafts for axial-flux PMSMs," IEEE Trans. Veh. Technol., Vol. 71, No. 5, 4879-4888, May 2022.
doi:10.1109/TVT.2022.3154150 Google Scholar
21. Khan, M. A., I. Husain, M. R. Islam, and J. T. Klass, "Design of experiments to address manufacturing tolerances and process variations influencing cogging torque and back EMF in the mass production of the permanent-magnet synchronous motors," IEEE Trans. Ind. Appl., Vol. 50, No. 1, 346-355, Jan./Feb. 2014.
doi:10.1109/TIA.2013.2271473 Google Scholar