Vol. 126
Latest Volume
All Volumes
PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-10-25
A Circular Array with Improved Focusing Properties
By
Progress In Electromagnetics Research C, Vol. 126, 13-22, 2022
Abstract
A concentric circular array consisting of two rings is proposed to focus the radiated field at a point in the near-field zone. In the proposed two-ring array, the radius of the outer ring was chosen so that the radiated fields from all elements on the two rings add constructively at the focal point, thus no phase shifter is needed in this design. The N elements of the inner ring are uniformly excited in amplitude and phase, while the M elements on the outer ring are excited uniformly in phase, and given uniform magnitude excitations of N/M of that given to the inner. Therefore, two deep nulls are achieved on both sides of the focusto enhance the focal width. The focusing properties are investigated by exploring the array parameters, such as variation of the focused field along the normal to the array, field distribution on the focalplane, and depth of field (size of the focal spot). Computer simulations using the MATLAB environment are performed by point source radiators. For verification, the array was simulated using the CST microwave studio, and the obtained results showed good agreement. The array is useful for hyperthermia and imaging applications.
Citation
Mohammed Z. Mohammed Fwzi Khalil Sayidmarie , "A Circular Array with Improved Focusing Properties," Progress In Electromagnetics Research C, Vol. 126, 13-22, 2022.
doi:10.2528/PIERC22080806
http://www.jpier.org/PIERC/pier.php?paper=22080806
References

1. Bogosanovic, M. and A. G. Williamson, "Microstrip antenna array with a beam focused in the near-field zone for application in noncontact microwave industrial inspection," IEEE Transactions on Instrumentation and Measurement, Vol. 56, No. 6, 2186-2195, 2007.
doi:10.1109/TIM.2007.907954

2. Daniels, D. J., Ground Penetrating Radar, IET, London, United Kingdom, 2004.
doi:10.1049/PBRA015E

3. Nepa, P., A. Buffi, A. Michel, and G. Manara, "Technologies for near-field focused microwave antennas," International Journal of Antennas and Propagation, Vol. 2017, Article ID 7694281, 2017.

4. Guo, T. C., W. W. Guo, and L. E. Larsen, "A local field study of a water-immersed microwave antenna array for medical imagery and therapy," IEEE Transactions on Microwave Theory and Techniques, Vol. 32, 844-854, 1984.
doi:10.1109/TMTT.1984.1132781

5. Lee, K., J.-Y. Kim, and S.-H. Son, "Experimental phantom test of 925 MHz microwave energy focusing for non-invasive local thermotherapy," Results in Physics, Vol. 38, No. 105585, 2022.

6. Nepa, P. and A. Buffi, "Near-field focused microwave antennas near-field shaping and implementation," IEEE Antennas & Propagation Magazine, Vol. 59, No. 3, 42-53, 2017.
doi:10.1109/MAP.2017.2686118

7. Ismail, M. S. and K. H. Sayidmarie, "Investigation of three array geometries for focused array hyperthermia," The International Symposium on Antennas and Propagation, Sapporo, Japan, 1992.

8. Sayidmarie, K. H. and A. M. Abdulkhaleq, "Investigation of six array geometries for focused array hyperthermia applications," Progress In Electromagnetics Research M, Vol. 23, 181-194, 2012.
doi:10.2528/PIERM12010605

9. Tomás, J. J., M. Arrebola, G. Leόn, and F. Las-Heras, "Near-field focussed array with two simultaneous and independent spots," Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation, 1-2, Chicago, IL, USA, 2012.

10. Chou, H. T., M. R. Pino, P. Nepa, and C. Y. Liu, "Near-field focused subarrays in a multi-panel configuration," IEEE Access, Vol. 7, 143097-143108, 2019.
doi:10.1109/ACCESS.2019.2944054

11. Cheng, Y. J. and F. Xue, "Ka-band near-field-focused array antenna with variable focal point," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 5, 1725-1732, 2016.
doi:10.1109/TAP.2016.2540646

12. Ayestarán, R. G., "Fast near-field multifocusing of antenna arrays including element coupling using neural networks," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 7, 1233-1237, 2018.
doi:10.1109/LAWP.2018.2840540

13. Yi, X., X. Chen, L. Zhou, and S. Hao, "A high-efficiency near-field focused transmitting antenna based on the equal power divisions," AIP Advances, Vol. 10, No. 11, 115111, 2020.
doi:10.1063/5.0029673

14. Sayidmarie, K. H. and Eanaas U. Taha, "Development of a semi-circle phased array for local hyperthermia," 2005 IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications Proceeding, 1430-1434, 2005.
doi:10.1109/MAPE.2005.1618193

15. Alkhalifeh, K., R. Sarkis, and C. Craeye, "Design of a novel 3D circular Vivaldi antennas array for ultra-wideband near-field radar imaging," 2012 6th European Conference on Antennas and Propagation (EUCAP), 898-901, Prague, Czech Republic, 2012.

16. Siragusa, R., P. Lemaitre-Auger, and S. Tedjini, "Near field focusing circular microstrip antenna array for RFID applications," IEEE Antennas and Propagation Society International Symposium, 1-4, 2009.

17. Gowda, V. R., M. F. Imani, T. Sleasman, O. Yurduseven, and D. R. Smith, "Focusing microwaves in the fresnel zone with a cavity-backed holographic metasurface," IEEE Access, Vol. 6, 12815-12824, 2018, doi: 10.1109/ACCESS.2018.2802379.
doi:10.1109/ACCESS.2018.2802379

18. Huang, R., B. Liu, and Q. Tan, "A near-field focused circular array based on dielectric resonator antenna," IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI), 4-10, Dec. 2021.

19. Han, X., S. Ding, Y. Huang, Y. Zhou, H. Tang, and B. Wang, "Frequency diversity array for near-field focusing," Electronics, Vol. 9, 958, 2020, doi: 10.3390/electronics9060958.
doi:10.3390/electronics9060958

20. Balanis, C. A, Antenna Theory Analysis and Design, John Wiley & Sons. Inc., New York, 2005.