Vol. 125
Latest Volume
All Volumes
PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-10-25
Analysis and Design of Compact Ultra-Wideband in-Phase/Out-of-Phase Power Dividers
By
Progress In Electromagnetics Research C, Vol. 125, 217-228, 2022
Abstract
This paper presents the analysis and design of in-phase/out-of-phase power dividers with compact-size and ultra-wideband characteristics. The proposed designs are composed of a T-junction microstrip (MS)-to-slotline power divider with a shorting via and two slotline-to-MS transitions. The phase response at the outputs can be controlled by arranging the MS-line direction of the transition, i.e., the same direction results in the in-phase, whereas the opposite MS-line directions reverse the electrical field, thus resulting in the out-of-phase. Thanks to utilizing the MS-to-slotline power divider and circular slots and circular stubs at the transitions, the proposed structures achieve ultra-wide bandwidth and compact size simultaneously. The dividers are theoretically analyzed using transmission-line equivalent circuit, and then verified computationally and experimentally. Simulation and measurement indicate that the proposed power dividers yield ultra-wideband performance across 1.2-11.0 GHz (~160%) with magnitude difference ±0.5 dB and phase difference ±5° at the outputs. As an example of application, a differential-fed Vivaldi antenna fed by the proposed out-of-phase power divider is implemented. The antenna yields a 160% bandwidth (1.2-11.0 GHz) for 10-dB return loss and a stable end-fire radiation within the whole impedance bandwidth.
Citation
Ho-Sy-Nhat Huy, Nguyen Khac Kiem, and Son Xuat Ta, "Analysis and Design of Compact Ultra-Wideband in-Phase/Out-of-Phase Power Dividers," Progress In Electromagnetics Research C, Vol. 125, 217-228, 2022.
doi:10.2528/PIERC22082603
References

1. Wu, Y., L. Jiao, Z. Zhuang, and Y. Liu, "The art of power dividing: A review for state-of-the-art planar power dividers," China Communications, Vol. 14, No. 5, 1-16, May 2017.

2. Federal Communications Commission "Revision of part 15 of the commission's rules regarding UWB transmission systems," First Report, FCC 02-48, 2002.

3. Wilkinson, E. J., "An N-way hybrid power divider," IRE Transactions on Microwave Theory and Techniques, Vol. 8, No. 1, 116-118, Jan. 1960.
doi:10.1109/TMTT.1960.1124668

4. Ju, I., M. Cho, I. Song, and J. D. Cressler, "A compact, wideband lumped-element Wilkinson power divider/combiner using symmetric inductors with embedded capacitors," IEEE Microwave and Wireless Components Letters, Vol. 26, No. 8, 595-597, Aug. 2016.
doi:10.1109/LMWC.2016.2585548

5. Oraizi, H. and A. R. Sharifi, "Design and optimization of broadband asymmetrical multisection Wilkinson power divider," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 5, 2220-2231, May 2006.
doi:10.1109/TMTT.2006.872786

6. Honari, M. M., L. Mirzavand, R. Mirzavand, A. Abdipour, and P. Mousavi, "Theoretical design of broadband multisection wilkinson power dividers with arbitrary power split ratio," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 6, No. 4, 605-612, Apr. 2016.
doi:10.1109/TCPMT.2016.2518581

7. Ahmed, U. T. and A. M. Abbosh, "Wideband out-of-phase power divider using tightly coupled lines and microstrip to slotline transitions," Electronics Letters, Vol. 52, No. 2, 126-128, 2016.
doi:10.1049/el.2015.3255

8. Henin, B. and A. Abbosh, "Wideband hybrid using three-line coupled structure and microstrip-slot transitions," IEEE Microwave and Wireless Components Letters, Vol. 23, No. 7, 335-337, Jul. 2013.
doi:10.1109/LMWC.2013.2262930

9. Shen, X., Y. Liu, S. Zhou, and Y. Wu, "A novel compact tunable coupled-line power divider using varactors," 2015 Asia-Pacific Microwave Conference (APMC), 1-3, 2015.

10. Shuppert, B., "Microstrip/slotline transitions: Modeling and experimental investigation," IEEE Transactions on Microwave Theory and Techniques, Vol. 36, No. 8, 1272-1282, Aug. 1988.
doi:10.1109/22.3669

11. Ahmed, U. T. and A. M. Abbosh, "Compact single-layer in-phase power divider employing microstrip to slotline transitions," 2014 1st Australian Microwave Symposium (AMS), 13-14, 2014.
doi:10.1109/AUSMS.2014.7017342

12. Bialkowski, M. E. and A. M. Abbosh, "Design of a compact UWB out-of-phase power divider," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 4, 289-291, Apr. 2007.
doi:10.1109/LMWC.2007.892979

13. Zhu, H., Z. Cheng, and Y. J. Guo, "Design of wideband in-phase and out-of-phase power dividers using microstrip-to-slotline transitions and slotline resonators," IEEE Transactions on Microwave Theory and Techniques, Vol. 67, No. 4, 1412-1424, Apr. 2019.
doi:10.1109/TMTT.2019.2897928

14. Xiao, B., H. Yao, M. Li, J. -S. Hong, and K. L. Yeung, "Flexible wideband microstrip-slotline-microstrip power divider and its application to antenna array," IEEE Access, Vol. 7, 143973-143979, 2019.
doi:10.1109/ACCESS.2019.2944462

15. Horestani, A. K. and Z. Shaterian, "Ultra-wideband balun and power divider using coplanar waveguide to microstrip transitions," International Journal of Electronics and Communications, Vol. 95, 297-303, 2018.
doi:10.1016/j.aeue.2018.08.024

16. Xu, H.-T., et al. "A wideband out-of-phase power divider based on odd-mode spoof surface plasmon polaritons," 2020 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 1-3, 2020.

17. Ghimire, J. and D.-Y Choi, "Ultra-wide band double-slot podal and anti-podal Vivaldi antennas feed by compact out-of-phase power divider slot for uid properties determination," Sensors, 454, 2022.

18. Kumari, G. and R. K. Barik, "Compact out-of-phase wideband substrate integrated waveguide based power divider loaded by slots for Ku and K band applications," 2019 International Conference on Communication and Signal Processing (ICCSP), 0396-0399, 2019.
doi:10.1109/ICCSP.2019.8698084

19. Ahmed, U. T. and A. M. Abbosh, "Compact single-layer in-phase power divider employing microstrip to slotline transitions," 2014 1st Australian Microwave Symposium (AMS), 13-14, 2014.
doi:10.1109/AUSMS.2014.7017342

20. Xiao, L., H. Peng, and T. Yang, "Compact ultra-wideband in-phase multilayer power divider," Progress In Electromagnetics Research Letters, Vol. 48, 33-37, 2014.
doi:10.2528/PIERL14061901

21. Miller, G., "TF3 (3-Port Transformer),", Sep. 10, 2008, [Online]. Available [Last accessed: Aug. 26, 2022]: https://edadocs.software.keysight.com/pages/viewpage.action?pageId=5924503.

22. Janaswamy, R. and D. H. Schaubert, "Characteristic impedance of a wide slotline on low-permittivity substrates (short paper)," IEEE Transactions on Microwave Theory and Techniques, Vol. 34, No. 8, 900-902, Aug. 1986.
doi:10.1109/TMTT.1986.1133465

23. Azim, R., M. T. Islam, and N. Misran, "Compact tapered-shape slot antenna for UWB applications," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1190-1193, 2011.
doi:10.1109/LAWP.2011.2172181

24. Amiri, M., F. Tofigh, A. Ghafoorzadeh-Yazdi, and M. Abolhasan, "Exponential antipodal Vivaldi antenna with exponential dielectric lens," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1792-1795, 2017.

25. Dai, L. H., T. Zhou, Z. R. Liang, and Y. Jin Zhou, "Miniaturized broadband antipodal Vivaldi antenna with high gain and its array," 2019 International Symposium on Antennas and Propagation (ISAP), 1-3, 2019.

26. Guo, J., T. Djerafi, and K. Wu, "Balanced corrugated antipodal linear tapered slot antenna with integrated feeding for cross-polarization suppression," 18th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM), 1-4, 2018.

27. Eichenberger, J., E. Yetisir, and N. Ghalichechian, "High-gain antipodal Vivaldi antenna with pseudo element and notched tapered slot operating at (2.5 to 57) GHz," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 7, 4357-4366, Jul. 2019.
doi:10.1109/TAP.2019.2906008