1. Wu, Y., L. Jiao, Z. Zhuang, and Y. Liu, "The art of power dividing: A review for state-of-the-art planar power dividers," China Communications, Vol. 14, No. 5, 1-16, May 2017. Google Scholar
2. Federal Communications Commission "Revision of part 15 of the commission's rules regarding UWB transmission systems," First Report, FCC 02-48, 2002. Google Scholar
3. Wilkinson, E. J., "An N-way hybrid power divider," IRE Transactions on Microwave Theory and Techniques, Vol. 8, No. 1, 116-118, Jan. 1960.
doi:10.1109/TMTT.1960.1124668 Google Scholar
4. Ju, I., M. Cho, I. Song, and J. D. Cressler, "A compact, wideband lumped-element Wilkinson power divider/combiner using symmetric inductors with embedded capacitors," IEEE Microwave and Wireless Components Letters, Vol. 26, No. 8, 595-597, Aug. 2016.
doi:10.1109/LMWC.2016.2585548 Google Scholar
5. Oraizi, H. and A. R. Sharifi, "Design and optimization of broadband asymmetrical multisection Wilkinson power divider," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 5, 2220-2231, May 2006.
doi:10.1109/TMTT.2006.872786 Google Scholar
6. Honari, M. M., L. Mirzavand, R. Mirzavand, A. Abdipour, and P. Mousavi, "Theoretical design of broadband multisection wilkinson power dividers with arbitrary power split ratio," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 6, No. 4, 605-612, Apr. 2016.
doi:10.1109/TCPMT.2016.2518581 Google Scholar
7. Ahmed, U. T. and A. M. Abbosh, "Wideband out-of-phase power divider using tightly coupled lines and microstrip to slotline transitions," Electronics Letters, Vol. 52, No. 2, 126-128, 2016.
doi:10.1049/el.2015.3255 Google Scholar
8. Henin, B. and A. Abbosh, "Wideband hybrid using three-line coupled structure and microstrip-slot transitions," IEEE Microwave and Wireless Components Letters, Vol. 23, No. 7, 335-337, Jul. 2013.
doi:10.1109/LMWC.2013.2262930 Google Scholar
9. Shen, X., Y. Liu, S. Zhou, and Y. Wu, "A novel compact tunable coupled-line power divider using varactors," 2015 Asia-Pacific Microwave Conference (APMC), 1-3, 2015. Google Scholar
10. Shuppert, B., "Microstrip/slotline transitions: Modeling and experimental investigation," IEEE Transactions on Microwave Theory and Techniques, Vol. 36, No. 8, 1272-1282, Aug. 1988.
doi:10.1109/22.3669 Google Scholar
11. Ahmed, U. T. and A. M. Abbosh, "Compact single-layer in-phase power divider employing microstrip to slotline transitions," 2014 1st Australian Microwave Symposium (AMS), 13-14, 2014.
doi:10.1109/AUSMS.2014.7017342 Google Scholar
12. Bialkowski, M. E. and A. M. Abbosh, "Design of a compact UWB out-of-phase power divider," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 4, 289-291, Apr. 2007.
doi:10.1109/LMWC.2007.892979 Google Scholar
13. Zhu, H., Z. Cheng, and Y. J. Guo, "Design of wideband in-phase and out-of-phase power dividers using microstrip-to-slotline transitions and slotline resonators," IEEE Transactions on Microwave Theory and Techniques, Vol. 67, No. 4, 1412-1424, Apr. 2019.
doi:10.1109/TMTT.2019.2897928 Google Scholar
14. Xiao, B., H. Yao, M. Li, J. -S. Hong, and K. L. Yeung, "Flexible wideband microstrip-slotline-microstrip power divider and its application to antenna array," IEEE Access, Vol. 7, 143973-143979, 2019.
doi:10.1109/ACCESS.2019.2944462 Google Scholar
15. Horestani, A. K. and Z. Shaterian, "Ultra-wideband balun and power divider using coplanar waveguide to microstrip transitions," International Journal of Electronics and Communications, Vol. 95, 297-303, 2018.
doi:10.1016/j.aeue.2018.08.024 Google Scholar
16. Xu, H.-T., et al. "A wideband out-of-phase power divider based on odd-mode spoof surface plasmon polaritons," 2020 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 1-3, 2020. Google Scholar
17. Ghimire, J. and D.-Y Choi, "Ultra-wide band double-slot podal and anti-podal Vivaldi antennas feed by compact out-of-phase power divider slot for uid properties determination," Sensors, 454, 2022. Google Scholar
18. Kumari, G. and R. K. Barik, "Compact out-of-phase wideband substrate integrated waveguide based power divider loaded by slots for Ku and K band applications," 2019 International Conference on Communication and Signal Processing (ICCSP), 0396-0399, 2019.
doi:10.1109/ICCSP.2019.8698084 Google Scholar
19. Ahmed, U. T. and A. M. Abbosh, "Compact single-layer in-phase power divider employing microstrip to slotline transitions," 2014 1st Australian Microwave Symposium (AMS), 13-14, 2014.
doi:10.1109/AUSMS.2014.7017342 Google Scholar
20. Xiao, L., H. Peng, and T. Yang, "Compact ultra-wideband in-phase multilayer power divider," Progress In Electromagnetics Research Letters, Vol. 48, 33-37, 2014.
doi:10.2528/PIERL14061901 Google Scholar
21. Miller, G., "TF3 (3-Port Transformer),", Sep. 10, 2008, [Online]. Available [Last accessed: Aug. 26, 2022]: https://edadocs.software.keysight.com/pages/viewpage.action?pageId=5924503. Google Scholar
22. Janaswamy, R. and D. H. Schaubert, "Characteristic impedance of a wide slotline on low-permittivity substrates (short paper)," IEEE Transactions on Microwave Theory and Techniques, Vol. 34, No. 8, 900-902, Aug. 1986.
doi:10.1109/TMTT.1986.1133465 Google Scholar
23. Azim, R., M. T. Islam, and N. Misran, "Compact tapered-shape slot antenna for UWB applications," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1190-1193, 2011.
doi:10.1109/LAWP.2011.2172181 Google Scholar
24. Amiri, M., F. Tofigh, A. Ghafoorzadeh-Yazdi, and M. Abolhasan, "Exponential antipodal Vivaldi antenna with exponential dielectric lens," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1792-1795, 2017. Google Scholar
25. Dai, L. H., T. Zhou, Z. R. Liang, and Y. Jin Zhou, "Miniaturized broadband antipodal Vivaldi antenna with high gain and its array," 2019 International Symposium on Antennas and Propagation (ISAP), 1-3, 2019. Google Scholar
26. Guo, J., T. Djerafi, and K. Wu, "Balanced corrugated antipodal linear tapered slot antenna with integrated feeding for cross-polarization suppression," 18th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM), 1-4, 2018. Google Scholar
27. Eichenberger, J., E. Yetisir, and N. Ghalichechian, "High-gain antipodal Vivaldi antenna with pseudo element and notched tapered slot operating at (2.5 to 57) GHz," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 7, 4357-4366, Jul. 2019.
doi:10.1109/TAP.2019.2906008 Google Scholar