1. Zhang, J., Y. Ying, and X. Yao, "Effects of turning frequency on the nutrients of Camellia oleifera shell co-compost with goat dung and evaluation of co-compost maturity," Plos One, Vol. 14, No. 9, e0222841, 2019.
doi:10.1371/journal.pone.0222841 Google Scholar
2. Situmeang, Y. P., I. D. N. Sudita, and M. Suarta, "Manure utilization from cows, goats, and chickens as compost, biochar, and poschar in increasing the red chili yield," International Journal on Advanced Science, Engineering and Information Technology, Vol. 9, No. 6, 2088-2095, 2019.
doi:10.18517/ijaseit.9.6.10345 Google Scholar
3. Noreen, N. A. Y. A. R. A., N. A. D. I. A. Ramzan, Z. A. H. I. D. A. Perveen, and S. A. L. E. E. M. Shahzad, "A comparative study of cow dung compost, goat pellets, poultry waste manure and plant debris for thermophilic, thermotolerant and mesophilic microflora with some new reports from Pakistan," Pak. J. Bot, Vol. 51, No. 3, 1155-1159, 2019. Google Scholar
4. Ani, K. A., C. M. Agu, C. Esonye, and M. C. Menkiti, "Investigations on the characterizations, optimization and effectiveness of goat manure compost in crude oil biodegradation," Current Research in Green and Sustainable Chemistry, Vol. 4, 100120, 2021.
doi:10.1016/j.crgsc.2021.100120 Google Scholar
5. Ren, X., Z.Wang, M. Zhao, J. Xie, Z. Zhang, F. Yang, and Y. Ding, "Role of selenite on the nitrogen conservation and greenhouse gases mitigation during the goat manure composting process," Science of the Total Environment, 155799, 2022.
doi:10.1016/j.scitotenv.2022.155799 Google Scholar
6. Meyer, D., P. Price, and B. Karle, "Solid manure moisture content determination-microwave method for exported solid manures," California Dairy Quality Assurance Program, 2008. Google Scholar
7. Pankaj, P., P. Kaur, and K. Singh Mann, "Frequency, temperature and moisture dependent dielectric properties of chicken manure relevant to radio frequency/microwave drying," Poultry Science Journal, Vol. 9, No. 2, 187-195, 2021. Google Scholar
8. Luo, T., Y. Wang, and P. Pandey, "The removal of moisture and antibiotic resistance genes in dairy manure by microwave treatment," Environmental Science and Pollution Research, Vol. 28, No. 6, 6675-6683, 2021.
doi:10.1007/s11356-020-10986-8 Google Scholar
9. Kampeephat, S., P. Krachodnok, and R. Wongsan, "Efficiency improvement for conventional rectangular horn antenna by using EBG technique," International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering, Vol. 8, No. 7, 1038-1043, 2014. Google Scholar
10. Wongsan, R. and P. Khamsalee, "Hybrid metamaterial structure for asymmetric horn of secondary radar system," 2019 7th International Electrical Engineering Congress (iEECON), 1-4, IEEE, March 2019. Google Scholar
11. Karami-Raviz, A. and S. E. Hosseini, "A novel horn antenna with a bed of nails with high gain and low side lobes," 2020 28th Iranian Conference on Electrical Engineering (ICEE), 1-4, IEEE, August 2020.. Google Scholar
12. Sifat, S. M., S. I. Shams, and A. A. Kishk, "Ka-band integrated multilayer pyramidal horn antenna excited by substrate integrated gap waveguide," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 6, 4842-4847, 2021.
doi:10.1109/TAP.2021.3137483 Google Scholar
13. Yoshida, K., N. Kashiyama, M. Kanemoto, S. Umemoto, H. Nishikawa, A. Tanaka, and T. Douseki, "2.45-GHz wireless power transmitter with dual-polarization-switching cantenna for LED accessories," 2019 IEEE Wireless Power Transfer Conference (WPTC), 371-374, IEEE, June 2019.
doi:10.1109/WPTC45513.2019.9055595 Google Scholar
14. Wongsan, R., P. Krachodnok, S. Kampeephat, and P. Kamphikul, "Gain enhancement for conventional circular horn antenna by using EBG technique," 2015 12th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technolog (ECTI-CON), 1-4, IEEE, June 2015. Google Scholar
15. Wongsan, R., P. Duangtang, and P. Mesawad, "Dimension reduction of conical horn antennas by adding structure of metamaterial," 2015 IEEE Asia Pacific Conference on Wireless and Mobile (APWiMob), 214-217, IEEE, August 2015.
doi:10.1109/APWiMob.2015.7374957 Google Scholar
16. Duangtang, P., P. Mesawad, and R.Wongsan, "Creating a gain enhancement technique for a conical horn antenna by adding a wire medium structure at the aperture," Journal of Electromagnetic Engineering and Science, Vol. 16, No. 2, 134-142, 2016.
doi:10.5515/JKIEES.2016.16.2.134 Google Scholar
17. Xu, Y. X. and Y. B. Tian, "Optimal design of conical horn antenna based on GP model with coarse mesh," Iranian Journal of Science and Technology, Transactions of Electrical Engineering, Vol. 43, No. 4, 717-724, 2019.
doi:10.1007/s40998-019-00209-3 Google Scholar
18. Ridho, S., C. Apriono, F. Y. Zulkifli, and E. T. Rahardjo, "Design of corrugated horn antenna with wire medium addition as parabolic feeder for Ku-band very small aperture terminal (VSAT) application," 2020 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET), 163-166, IEEE, November 2020. Google Scholar
19. Dhandhukia, H. and D. Pujara, "Fabry-Perot horn antenna with improved gain," 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, 1973-1974, IEEE, July 2020. Google Scholar
20. Baldazzi, E., A. Al-Rawi, R. Cicchetti, A. B. Smolders, O. Testa, C. D. J. van Coevorden Moreno, and D. Caratelli, "A high-gain dielectric resonator antenna with plastic-based conical horn for millimeter-wave applications," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 6, 949-953, 2020.
doi:10.1109/LAWP.2020.2984565 Google Scholar
21. Ni, C., J. Jiang, W. J. Wu, L. Zhao, and Z. Fan, "Decoupling method based on complementary split ring resonator (CSRR) for two cone shipborne antennas," IEEE Access, Vol. 9, 167845-167854, 2021.
doi:10.1109/ACCESS.2021.3135577 Google Scholar
22. Yahaya, N., Z. Abbas, M. A. Ismail, and B. M. Ali, "Determination of moisture content of hevea rubber latex using a microstrip patch antenna," PIERS Proceedings, 1290-1293, Kuala Lumpur, Malaysia, March 27-30, 2012. Google Scholar
23. Jain, S., P. K. Mishra, V. V. Thakare, and J. Mishra, "Microstrip moisture sensor based on microstrip patch antenna," Progress In Electromagnetics Research M, Vol. 76, 177-185, 2018.
doi:10.2528/PIERM18092602 Google Scholar
24. Jain, S., "Early detection of salt and sugar by microstrip moisture sensor based on direct transmission method," Wireless Personal Communications, Vol. 122, No. 1, 593-601, 2022.
doi:10.1007/s11277-021-08914-1 Google Scholar
25. Liu, J., S. Qiu, and Z. Wei, "Real-time measurement of moisture content of paddy rice based on microstrip microwave sensor assisted by machine learning strategies," Chemosensors, Vol. 10, No. 10, 376, 2022.
doi:10.3390/chemosensors10100376 Google Scholar
26. Li, Z., Y. Wang, and X. Qu, "Design of high gain broadband antenna based on Fabry-Perot resonator," Proceedings of the 3rd International Conference on Vision, Image and Signal Processing, 1-5, August 2019. Google Scholar
27. Swain, R., A. Chatterjee, S. Nanda, and R. K. Mishra, "A linear-to-circular polarization conversion metasurface based wideband aperture coupled antenna," Journal of Electrical Engineering & Technology, Vol. 15, No. 3, 1293-1299, 2020.
doi:10.1007/s42835-020-00402-z Google Scholar
28. Srinivas, G. and D. Vakula, "High gain and wide band antenna based on FSS and RIS configuration," Radioengineering, Vol. 30, No. 1, 96-103, 2021.
doi:10.13164/re.2021.0096 Google Scholar
29. Li, Y. L. and K. M. Luk, "Dual circular polarizations generated by self-polarizing Fabry-Pérot cavity antenna with loaded polarizer," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 12, 8890-8895, 2021.
doi:10.1109/TAP.2021.3090850 Google Scholar
30. Muñoz Jaramillo, F. P., "Departamento de eléctrica, electrόnica y telecomunicaciones,", Doctoral dissertation, Universidad De Las Fuerzas Armadas, 2020. Google Scholar
31. Santosa, S. P. and A. Nurdianto, "Rancang bangun antena kaleng di frekuensi 2.4 GHz untuk memperkuat sinyal WIFI," Seminar Nasional Teknologi, Vol. 1, No. 1, 574-580, May 2018. Google Scholar
32. Pahrurrozi, P., C. M. O. Muvianto, and S. Ariessaputra, "Desain modifikasi cantenna untuk optimasi feed antena grid 2.4 GHz," Jurnal Bakti Nusa, Vol. 1, 49-57, 2020. Google Scholar
33. Bakhtiari, A., "Investigation of enhanced gain miniaturized patch antenna using near zero index metamaterial structure characteristics," IETE Journal of Research, Vol. 68, No. 2, 1312-1319, 2022.
doi:10.1080/03772063.2019.1644973 Google Scholar
34. Fhafhiem, N., P. Krachodnok, and R. Wongsan, "Curved strip dipole antenna on EBG reflector plane for RFID applications," WSEAS Transactions on Communications, Vol. 9, No. 6, 374-383, 2010. Google Scholar
35. Naktong, W. and N. Wattikornsirikul, "Dipole antenna with 18 × 5 square electromagnetic band gap for applications used in monitoring children trapped in cars," Progress In Electromagnetics Research M, Vol. 112, 163-176, 2022.
doi:10.2528/PIERM22053003 Google Scholar
36. Balanis, C. A., Antenna Theory and Design, John Willey & Sons, NY, USA, 1997.
37. Horwitz, W. and G. W. Latimer, Official Methods of Analysis, 18th Edition, AOAC International, USA, 2005.
38. ISO 3944 "Fertilizers --- Determination of bulk density (loose),", International Standard, 1992. Google Scholar