Vol. 125
Latest Volume
All Volumes
PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-10-17
Elimination of Cogging Torque and Torque Ripple in Magnetic Gear Using Slicing Technique
By
Progress In Electromagnetics Research C, Vol. 125, 179-189, 2022
Abstract
Magnetic gears (MGs) have many advantages over mechanical gears, including high efficiency, no contact, no lubrication, and low noise. Even though MGs are energy-efficient, cogging torque and torque ripple are always challenging, especially at low-speed applications. Generally, the cancellation of cogging torque enhances the performance of the operation of PM machines. This article proposes an approach based on slicing technique through which reduced cogging torque and improved torque density can be achieved in MGs. The two-dimensional finite element method (2D FEM) has been used to analyze the models using Simcenter and MATLAB software packages. The results show that the elimination of cogging torque of the proposed models compared to the base model is 97.53% on the inner rotor, and that of the outer rotor is 42.23%. Also, the torque density is slightly improved by 0.05% on the inner rotor while 0.1% improvement on the outer rotor is obtained.
Citation
Muhammed Khudair Rashid Ahmed Mahmood Mohammed , "Elimination of Cogging Torque and Torque Ripple in Magnetic Gear Using Slicing Technique," Progress In Electromagnetics Research C, Vol. 125, 179-189, 2022.
doi:10.2528/PIERC22083105
http://www.jpier.org/PIERC/pier.php?paper=22083105
References

1. Jian, L., K. Chau, and J. Jiang, "An integrated magnetic-geared permanent-magnet in-wheel motor drive for electric vehicles," 2008 IEEE Vehicle Power and Propulsion Conference, 1-6, IEEE, 2008.

2. Rens, J., K. Atallah, S. D. Calverley, and D. Howe, "A novel magnetic harmonic gear," IEEE Transactions on Industry Applications, Vol. 46, No. 1, 206-212, 2009.
doi:10.1109/TIA.2009.2036507

3. Huang, C.-C., M.-C. Tsai, D. G. Dorrell, and B.-J. Lin, "Development of a magnetic planetary gearbox," IEEE Transactions on Magnetics, Vol. 44, No. 3, 403-412, 2008.
doi:10.1109/TMAG.2007.914665

4. Atallah, K. and D. Howe, "A novel high-performance magnetic gear," IEEE Transactions on Magnetics, Vol. 37, No. 4, 2844-2846, 2001.
doi:10.1109/20.951324

5. Neves, C. G., A. Flores, D. L. Figueiredo, and A. S. Nunes, "Magnetic gear: A review," 2014 11th IEEE/IAS International Conference on Industry Applications, 1-6, IEEE, 2014.

6. Dosiek, L. and P. Pillay, "Cogging torque reduction in permanent magnet machines," IEEE Transactions on Industry Applications, Vol. 43, No. 6, 1565-1571, 2007.
doi:10.1109/TIA.2007.908160

7. Gerber, S. and R.-J. Wang, "Cogging torque definitions for magnetic gears and magnetically geared electrical machines," IEEE Transactions on Magnetics, Vol. 54, No. 4, 1-9, 2018.
doi:10.1109/TMAG.2017.2784823

8. Jungmayr, G., J. Loeffler, B. Winter, F. Jeske, and W. Amrhein, "Magnetic gear: Radial force, cogging torque, skewing, and optimization," IEEE Transactions on Industry Applications, Vol. 52, No. 5, 3822-3830, 2016.
doi:10.1109/TIA.2016.2571267

9. Bekhouche, L., R. Saou, A. K. Cherif Guerroudj, and M. E.-H. Zaim, "Electromagnetic torque ripple minimization of slotted doubly-salient-permanent-magnet generator for wind turbine applications," Progress In Electromagnetics Research M, Vol. 83, 181-190, 2019.
doi:10.2528/PIERM19052804

10. Jing, L., Z. Huang, J. Chen, and R. Qu, "Design, analysis, and realization of a hybrid-excited magnetic gear during overload," IEEE Transactions on Industry Applications, Vol. 56, No. 5, 4812-4819, 2020.
doi:10.1109/TIA.2020.3004425

11. Jing, L., Z. Huang, J. Chen, and R. Qu, "An asymmetric pole coaxial magnetic gear with unequal Halbach arrays and spoke structure," IEEE Transactions on Applied Superconductivity, Vol. 30, No. 4, 1-5, 2019.
doi:10.1109/TASC.2019.2892152

12. Caruso, M., A. O. Di Tommaso, R. Miceli, and F. Viola, "A cogging torque minimization procedure for interior permanent magnet synchronous motors based on a progressive modification of the rotor lamination geometry," Energies, Vol. 15, No. 14, 4956, 2022.
doi:10.3390/en15144956

13. Huner, E. and G. Zeka, "Reduction of cogging torque and improvement of electrical parameters in Axial Flux Permanent Magnet (AFPM) synchronous generator with experimental verification," Progress In Electromagnetics Research C, Vol. 104, 99-113, 2020.
doi:10.2528/PIERC20050302

14. Taghipour Boroujeni, S. and V. Zamani, "Influence of magnet shaping on cogging torque of surface-mounted PM machines," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 29, No. 5, 859-872, 2016.
doi:10.1002/jnm.2150

15. Zamani Faradonbeh, V., S. Taghipour Boroujeni, and N. Takorabet, "Optimum arrangement of PMs in surface-mounted PM machines: Cogging torque and flux density harmonics," Electrical Engineering, Vol. 102, No. 3, 1117-1127, 2020.
doi:10.1007/s00202-020-00925-8

16. Huang, X., Y. Guo, and L. Jing, "Comparative analysis of electromagnetic performance of magnetic gear," Progress In Electromagnetics Research Letters, Vol. 97, 69-76, 2021.
doi:10.2528/PIERL21031501

17. Taghipour Boroujeni, S., N. Takorabet, S. Mezani, T. Lubin, and P. Haghgooie, "Using and enhancing the cogging torque of PM machines in valve positioning applications," IET Electric Power Applications, Vol. 14, No. 12, 2516-2524, 2020.
doi:10.1049/iet-epa.2020.0221

18. Ge, X., Z. Zhu, G. Kemp, D. Moule, and C. Williams, "Optimal step-skew methods for cogging torque reduction accounting for three-dimensional effect of interior permanent magnet machines," IEEE Transactions on Energy Conversion, Vol. 32, No. 1, 222-232, 2016.
doi:10.1109/TEC.2016.2620476

19. Washington, J. G., G. J. Atkinson, and N. J. Baker, "Reduction of cogging torque and EMF harmonics in modulated pole machines," IEEE Transactions on Energy Conversion, Vol. 31, No. 2, 759-768, 2016.
doi:10.1109/TEC.2016.2520200

20. Song, Y., Z. Zhang, S. Yu, F. Zhang, and Y. Zhang, "Analysis and reduction of cogging torque in direct-drive external-rotor permanent magnet synchronous motor for belt conveyor application," IET Electric Power Applications, Vol. 15, No. 6, 668-680, 2021.
doi:10.1049/elp2.12048

21. Wang, Y. and L. Jing, "A new structure for the coaxial magnetic gear with HTS bulks for fitness car," Progress In Electromagnetics Research Letters, Vol. 103, 39-48, 2022.
doi:10.2528/PIERL22010902

22. Garcia-Gracia, M., A. Jimenez Romero, J. Herrero Ciudad, and S. Martin Arroyo, "Cogging torque reduction based on a new pre-slot technique for a small wind generator," Energies, Vol. 11, No. 11, 3219, 2018.
doi:10.3390/en11113219

23. Hwang, M.-H., H.-S. Lee, and H.-R. Cha, "Analysis of torque ripple and cogging torque reduction in electric vehicle traction platform applying rotor notched design," Energies, Vol. 11, No. 11, 3053, 2018.
doi:10.3390/en11113053

24. Kwon, J.-W., J.-H. Lee, W. Zhao, and B.-I. Kwon, "Flux-switching permanent magnet machine with phase-group concentrated-coil windings and cogging torque reduction technique," Energies, Vol. 11, No. 10, 2758, 2018.
doi:10.3390/en11102758

25. Jiang, J. W., B. Bilgin, Y. Yang, A. Sathyan, H. Dadkhah, and A. Emadi, "Rotor skew pattern design and optimisation for cogging torque reduction," IET Electrical Systems in Transportation, Vol. 6, No. 2, 126-135, 2016.
doi:10.1049/iet-est.2015.0021

26. Atallah, K., S. D. Calverley, and D. Howe, "Design, analysis and realisation of a high-performance magnetic gear," IEE Proceedings --- Electric Power Applications, Vol. 151, 135-143, 2004.
doi:10.1049/ip-epa:20040224

27. Zhu, Z. and D. Howe, "Influence of design parameters on cogging torque in permanent magnet machines," IEEE Transactions on Energy Conversion, Vol. 15, No. 4, 407-412, 2000.
doi:10.1109/60.900501

28. Hsiao, C.-Y., S.-N. Yeh, and J.-C. Hwang, "A novel cogging torque simulation method for permanent-magnet synchronous machines," Energies, Vol. 4, No. 12, 2166-2179, 2011.
doi:10.3390/en4122166