1. Shereen, M. K., M. I. Khattak, and J. Nebhen, "A review of achieving frequency reconfiguration through switching in microstrip patch antennas for future 5G applications," Alexandria Engineering Journal, Vol. 61, No. 1, 29-40, 2022.
doi:10.1016/j.aej.2021.04.105 Google Scholar
2. Kim, G. and K. Sangkil, "Design and analysis of dual polarized broadband microstrip patch antenna for 5G mmwave antenna module on FR4 substrate," IEEE Access, Vol. 9, 64306-64316, 2021.
doi:10.1109/ACCESS.2021.3075495 Google Scholar
3. Kumar, G. and K. P. Ray, Broadband Microstrip Antennas, Artech House, London, U.K., 2003.
4. Haykin, S., "Cognitive radio: Brain-empowered wireless communications," IEEE Journal on Selected Areas in Communications, Vol. 23, No. 2, 201-220, 2005.
doi:10.1109/JSAC.2004.839380 Google Scholar
5. Tawk, Y., J. Costantine, and C. Christodoulou, Antenna Design for Cognitive Radio, Artech House Boston, USA, 2016.
6. De Flaviis, F., L. Jofre, J. Romeu, and A. Grau, "Multiantenna systems for MIMO communications," Synthesis Lectures on Antennas, Vol. 31, No. 1, 1-250, 2008.
doi:10.1007/978-3-031-01536-6 Google Scholar
7. Varzakas, P., "Estimation of radio capacity of a spread spectrum cognitive radio rayleigh fading system," ACM Proceedings of the 17th Pan-Hellenic Conference on Informatics with international participation, 63-66, 2013. Google Scholar
8. Bakulin, M. G., V. B. Kreindelin, and D. Y. Pankratov, "Analysis of the capacity of MIMO channel in fading conditions," 2018 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO), 1-6, 2018. Google Scholar
9. Chitra, M. P., S. Divya, M. Premkumar, V. Tamilselvi, and N. Karthika, "MIMO cognitive radio capacity in flat fading channel," 2017 Third International Conference on Science Technology Engineering & Management (ICONSTEM), 915-919, 2017.
doi:10.1109/ICONSTEM.2017.8261335 Google Scholar
10. Cheng, B. and Z. Du, "Dual polarization MIMO antenna for 5G mobile phone applications," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 7, 4160-4165, 2020.
doi:10.1109/TAP.2020.3044649 Google Scholar
11. Chen, Y. S. and C. P. Chang, "Design of a four-element multiple-input{multiple-output antenna for compact long-term evolution small-cell base stations," IET Microwaves, Antennas & Propagation, Vol. 10, No. 4, 385-392, 2016.
doi:10.1049/iet-map.2015.0540 Google Scholar
12. Chen, W. S. and K. H. Lai, "Compact design of MIMO antennas for LTE 700 application," 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 1148-1149, 2015.
doi:10.1109/APS.2015.7304962 Google Scholar
13. Singh, H. S., G. K. Pandey, P. K. Bharti, and M. K. Meshram, "Compact printed diversity antenna for LTE700/GSM1700/1800/UMTS/Wi-Fi/Bluetooth/LTE2300/2500 applications for slim mobile handsets," Progress In Electromagnetics Research C, Vol. 56, 83-91, 2015.
doi:10.2528/PIERC14122601 Google Scholar
14. Krishnamoorthy, R., A. Desai, R. Patel, and A. Grover, "4 element compact triple band MIMO antenna for sub-6 GHz 5G wireless applications," Wireless Networks, Vol. 27, No. 6, 3747-3759, 2021.
doi:10.1007/s11276-021-02734-8 Google Scholar
15. Jaglan, N., S. D. Gupta, and M. S. Sharawi, "18 element massive MIMO/diversity 5G smartphones antenna design for sub-6 GHz LTE bands 42/43 applications," IEEE Open Journal of Antennas and Propagation, Vol. 2, 533-545, 2021.
doi:10.1109/OJAP.2021.3074290 Google Scholar
16. Cha, J., C.-S. Leem, I. Kim, H. Lee, and H. Lee, "Broadband dual-polarized 2 × 2 MIMO antenna for a 5G wireless communication system," Electronics, Vol. 10, No. 17, 2141, 2021.
doi:10.3390/electronics10172141 Google Scholar
17. Hussain, R., "Shared-aperture slot-based sub-6-GHz and mm-wave IoT antenna for 5G applications," IEEE Internet of Things Journal, Vol. 8, No. 13, 10807-10814, 2021.
doi:10.1109/JIOT.2021.3050383 Google Scholar
18. Wang, W., Z. Zhao, Z. Fang, Q. Sun, X. Liao, K. Y. See, and Y. Zheng, "Compact broadband four- port MIMO antenna for 5G and IoT applications," 2019 IEEE Asia-Pacific Microwave Conference (APMC), 1536-1538, 2019.
doi:10.1109/APMC46564.2019.9038745 Google Scholar
19. Li, S., X. L. Da, and S. Zhao, "The internet of things: A survey," Information Systems Frontiers, 243-259, 2015.
doi:10.1007/s10796-014-9492-7 Google Scholar
20. Zaman, M. R., R. Azim, N. Misran, M F. Asillam, and T. Islam, "Development of a semielliptical partial ground plane antenna for RFID and GSM-900," International Journal of Antennas and Propagation, 2014. Google Scholar
21. Bukhari, B., C. Singh, K. R. Jha, and S. K. Sharma, "Planar MIMO antennas for IoT and CR applications," 2017 IEEE Applied Electromagnetics Conference (AEMC), 1-2, 2017. Google Scholar
22. Bashir, U., K. R. Jha, G. Mishra, G. Singh, and S. K. Sharma, "Octahedron-shaped linearly polarized antenna for multistandard services including RFID and IoT," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 7, 3364-3373, 2017.
doi:10.1109/TAP.2017.2705097 Google Scholar
23. Ebrahimi, E. and P. S. Hall, "A dual port wide-narrowband antenna for cognitive radio," 2009 3rd European Conference on Antennas and Propagation, 809-812, 2009. Google Scholar
24. Al-Husseini, M., Y. Tawk, C. G. Christodoulou, K. Y. Kabalan, and A. El Hajj, "A reconfigurable cognitive radio antenna design," 2010 IEEE Antennas and Propagation Society International Symposium, 1-4, 2010. Google Scholar
25. Tawk, Y., J. Costantine, K. Avery, and C. G. Christodoulou, "Implementation of a cognitive radio front-end using rotatable controlled reconfigurable antennas," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 5, 1773-1778, 2011.
doi:10.1109/TAP.2011.2122239 Google Scholar
26. Mansoul, A., F. Ghanem, M. R. Hamid, and M. Trabelsi, "A selective frequency-reconfigurable antenna for cognitive radio applications," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 515-518, 2014.
doi:10.1109/LAWP.2014.2311114 Google Scholar
27. Cao, Y., S. W. Cheung, X. L. Sun, and T. I. Yuk, "Frequency-reconfigurable monopole antenna with wide tuning range for cognitive radio," Microwave and Optical Technology Letters, Vol. 56, No. 1, 145-152, 2014.
doi:10.1002/mop.28070 Google Scholar
28. Zheng, S. H., X. Y. Liu, and M. M. Tentzeris, "A novel optically controlled reconfigurable antenna for cognitive radio systems," 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI), 1246-1247, 2014.
doi:10.1109/APS.2014.6904950 Google Scholar
29. Erfani, E., J. Nourinia, C. Ghobadi, M. Niroo-Jazi, and T. A. Denidni, "Design and implementation of an integrated UWB/reconfigurable-slot antenna for cognitive radio applications," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 77-80, 2012.
doi:10.1109/LAWP.2011.2182631 Google Scholar
30. Srivastava, G., A. Mohan, and A. Chakrabarty, "Compact reconfigurable UWB slot antenna for cognitive radio applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1139-1142, 2016. Google Scholar
31. Nachouane, H., A. Najid, A. Tribak, and F. Riouch, "Dual port antenna combining sensing and communication tasks for cognitive radio," International Journal of Electronics and Telecommunications, Vol. 62, No. 2, 121-127, 2016.
doi:10.1515/eletel-2016-0016 Google Scholar
32. Hu, Z. H., P. S. Hall, and P. Gardner, "Reconfigurable dipole-chassis antennas for small terminal MIMO applications," Electronics Letters, Vol. 47, No. 17, 953-955, 2011.
doi:10.1049/el.2011.1801 Google Scholar
33. Chacko, B. P., G. Augustin, and T. A. Denidni, "Electronically reconfigurable uniplanar antenna with polarization diversity for cognitive radio applications," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 213-216, 2015.
doi:10.1109/LAWP.2014.2360353 Google Scholar
34. Cheng, S. P. and K. H. Lin, "A reconfigurable monopole MIMO antenna with wideband sensing capability for cognitive radio using varactor diodes," 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2233-2234, 2015.
doi:10.1109/APS.2015.7305505 Google Scholar
35. Tawk, Y., F. Ayoub, C. G. Christodoulou, and J. Costantine, "A MIMO cognitive radio antenna system," 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI), 572-573, 2013.
doi:10.1109/APS.2013.6710946 Google Scholar
36. Hussain, R. and M. S. Sharawi, "Integrated reconfigurable multiple-input-multiple-output antenna system with an ultra-wideband sensing antenna for cognitive radio platforms," IET Microwaves, Antennas & Propagation, Vol. 9, No. 9, 940-947, 2015.
doi:10.1049/iet-map.2014.0605 Google Scholar
37. Jha, K. R. and S. K. Sharma, "Combination of frequency agile and quasi-elliptical planar monopole antennas in MIMO implementations for handheld devices," IEEE Antennas Propagation Mag., Vol. 60, 118-131, 2018.
doi:10.1109/MAP.2017.2774198 Google Scholar
38. Fakharian, M. M., P. Rezaei, and A. A. Orouji, "A novel slot antenna with reconfigurable meander-slot DGS for cognitive radio applications," Applied Computational Electromagnetics Society Journal (ACES), Vol. 30, No. 7, 748-753, 2015. Google Scholar
39. Hussain, R. and M. S. Sharawi, "Planar four-element frequency agile MIMO antenna system with chassis mode reconfigurability," Microwave and Optical Technology Letters, Vol. 57, No. 8, 1933-1938, 2015.
doi:10.1002/mop.29218 Google Scholar