Vol. 128
Latest Volume
All Volumes
PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-12-24
A Novel STAP Method with Enhanced Degrees of Freedom
By
Progress In Electromagnetics Research C, Vol. 128, 17-27, 2023
Abstract
In this paper, a new space-time adaptive processing (STAP) method based on improved nested arrays and pulses configurations is proposed. Specifically, we first decompose the sensor array into two uniform linear arrays (ULAs) plus a separate sensor, similarly for pulse trains. Then, the original received signals from the physical array and pulse trains are introduced into the virtual domain, where the virtual clutter plus noise covariance matrix (CNCM) estimation is performed. Since the system has more virtual sensors and pulses from the perspective of virtual domain, the degrees of freedom (DOF) capability is effectively enhanced to improve the angle and Doppler resolution of radar. With the spatial-temporal smoothing technique, the STAP filter is designed by reconstructing the CNCM and virtual signal steering vector. Simulation results validate the effectiveness and superiority of the proposed algorithm.
Citation
Mingxin Liu, Wenying Feng, Jie Lin, Mengxu Fang, Wei Xu, and Xianding He, "A Novel STAP Method with Enhanced Degrees of Freedom," Progress In Electromagnetics Research C, Vol. 128, 17-27, 2023.
doi:10.2528/PIERC22091802
References

1. Li, J. and P. Stoica, MIMO Radar Signal Processing, Wiley, Hoboken, NJ, USA, 2009.

2. Liu, M., X. Wang, and L. Zou, "Robust STAP with reduced mutual coupling and enhanced DOF based on super nested sampling structure," IEEE Access, Vol. 7, 175420-175428, 2019.
doi:10.1109/ACCESS.2019.2957598        Google Scholar

3. Wei, W., L. Zou, and X. Wang, "Research on space-time adaptive processing with respect to the signal powers," Progress In Electromagnetics Research C, Vol. 82, 99-107, 2018.
doi:10.2528/PIERC18011401        Google Scholar

4. Wei, W., L. Zou, and X. Wang, "An array partitioning scheme of airborne phased-MIMO radar based on STAP SINR," Progress In Electromagnetics Research Letters, Vol. 79, 95-101, 2018.
doi:10.2528/PIERL18081503        Google Scholar

5. Liu, M., L. Zou, X. Yu, Y. Zhou, X. Wang, and B. Tang, "Knowledge aided covariance matrix estimation via Gaussian kernel function for airborne SR-STAP," IEEE Access, Vol. 8, 5970-5978, Jan. 2020.
doi:10.1109/ACCESS.2020.2963838        Google Scholar

6. Cai, W., H. Yan, J. Peng, J. Wu, et al. "Slow-time FDA-MIMO technique with application to STAP radar," IEEE Trans. Aerosp. Electron. Syst., Vol. 58, No. 1, 74-95, 2022.
doi:10.1109/TAES.2021.3098100        Google Scholar

7. Jiang, Z., Y. He, G. Li, and X. Zhang, "Robust STAP detection based on volume cross-correlation function in heterogeneous environments," IEEE Geosci. Remote Sens. Lett., Vol. 19, 2022.        Google Scholar

8. Ma, H., H. Tao, J. Su, and B. Liao, "DOD/DOA and polarization estimation in MIMO systems with spatially spread dipole quints," IEEE Commun. Lett., Vol. 24, 99-102, Jan. 2020.
doi:10.1109/LCOMM.2019.2948625        Google Scholar

9. Fishler, E., A. Haimovich, R. S. Blum, L. J. Cimini, D. Chizhik, and R. A. Valenzuela, "Spatial diversity in radars --- Models and detection performance," IEEE Trans. Signal Process., Vol. 54, No. 3, 823-838, Mar. 2006.
doi:10.1109/TSP.2005.862813        Google Scholar

10. Li, J. and P. Stoica, "MIMO radar with colocated antennas," IEEE Signal Process. Mag., Vol. 24, No. 5, 106-114, Sep. 2007.
doi:10.1109/MSP.2007.904812        Google Scholar

11. Bekkerman, I. and J. Tabrikian, "Target detect-ion and localization using MIMO radars and sensors," IEEE Trans. Signal Process., Vol. 54, No. 10, 3873-3883, Oct. 2006.
doi:10.1109/TSP.2006.879267        Google Scholar

12. Liu, Z., X.Wei, and X. Li, "Aliasing-free moving target detection in random pulse repetition interval radar based on compressed sensing," IEEE Sensors J., Vol. 13, No. 7, 2523-2534, Jul. 2013.
doi:10.1109/JSEN.2013.2249762        Google Scholar

13. Pal, P. and P. Vaidyanathan, "Nested arrays: A novel approach to array processing with enhanced degrees of freedom," IEEE Trans. Signal Process., Vol. 58, No. 8, 4167-4181, Aug. 2010.
doi:10.1109/TSP.2010.2049264        Google Scholar

14. Vaidyanathan, P. and P. Pal, "Sparse sensing with coprime samplers and arrays," IEEE Trans. Signal Process., Vol. 59, No. 2, 573-586, Feb. 2011.
doi:10.1109/TSP.2010.2089682        Google Scholar

15. Liu, C.-L. and P. Vaidyanathan, "Remarks on the spatial smoothing step in coarray MUSIC," IEEE Signal Process. Lett., Vol. 22, No. 9, 1438-1442, Sep. 2015.
doi:10.1109/LSP.2015.2409153        Google Scholar

16. Liu, M., X. Wang, and L. Zou, "Robust STAP with reduced mutual coupling and enhanced DOF based on super nested sampling structure," IEEE Access, Vol. 7, 175420-175428, 2019.
doi:10.1109/ACCESS.2019.2957598        Google Scholar

17. Pal, P. and P. P. Vaidyanathan, "Nested arrays in two dimensions, Part II: Application in two dimensional array processing," IEEE Trans. Signal Process., Vol. 60, No. 9, 4706-4718, Sept. 2012.
doi:10.1109/TSP.2012.2203815        Google Scholar

18. Liu, C.-L. and P. P. Vaidyanathan, "Super nested arrays: Linear sparse arrays with reduced mutual coupling --- Part I: Fundamentals," IEEE Trans. Signal Process., Vol. 64, No. 15, 3997-4012, Aug. 2016.
doi:10.1109/TSP.2016.2558159        Google Scholar

19. Wang, W., L. Zou, and X. Wang, "A novel two-level nested STAP strategy for clutter suppression in airborne radar," Math. Problems Eng., Vol. 2019, Art. No. 2540858, Jun. 2019.        Google Scholar

20. Liu, C.-L. and P. P. Vaidyanathan, "Cramér-Rao bounds for coprime and other sparse arrays, which find more sources than sensors," Digital Signal Process., Vol. 61, 43-61, 2016.        Google Scholar

21. Zheng, G. and J. Tang, "DOD and DOA estimation in bistatic MIMO radar for nested and coprime array with closed-form DOF," Int. J. Electron., Vol. 104, No. 5, 885-897, Nov. 2016.
doi:10.1080/00207217.2016.1253789        Google Scholar

22. Qin, S., Y. Zhang, and M. Amin, "Generalized coprime array configurations for direction-of-arrival estimation," IEEE Trans. Signal Process., Vol. 63, No. 6, 1377-1390, Mar. 2015.
doi:10.1109/TSP.2015.2393838        Google Scholar

23. Tan, Z., Y. Eldar, and A. Nehorai, "Direction of arrival estimation using co-prime arrays: A super resolution viewpoint," IEEE Trans. Signal Process., Vol. 62, No. 21, 5565-5576, Nov. 2014.
doi:10.1109/TSP.2014.2354316        Google Scholar

24. Adhikari, K., J. R. Buck, and K. E. Wage, "Extending coprime sensor arrays to achieve the peak side lobe height of a full uniform linear array," EURASIP J. Adv. Signal Process., Vol. 2014, No. 1, 2014.
doi:10.1186/1687-6180-2014-148        Google Scholar

25. Moffet, A. T., "Minimum-redundancy linear arrays," IEEE Trans. Antennas Propag., Vol. 16, No. 2, 172-175, 1968.
doi:10.1109/TAP.1968.1139138        Google Scholar

26. Li, R., Y. Wang, Z. He, J. Li, and G. Sun, "Minimum redundancy space-time adaptive processing utilizing reconstructed covariance matrix," Proc. IEEE Radar Conf. (RadarConf ), 0722-0726, Seattle, WA, USA, 2017.        Google Scholar

27. Liu, C.-L. and P. P. Vaidyanathan, "Coprime arrays and samplers for space-time adaptive processing," Proc. IEEE Int. Conf. Acoust. Speech, Signal Procces. (ICASSP), 2364-2368, Queensland, Australia, 2015.        Google Scholar

28. Liu, S., Y. Ma, and T. Shan, "Segmented discrete polynomial-phase transform with coprime sampling," Proc. IET Int. Radar Conf. (IRC), 5619-5621, Nanjing, Jiangsu, China, 2018.        Google Scholar

29. Wang, X., Z. Yang, H. Huang, J. Huang, and M. Jiang, "Space-time adaptive processing for airborne radars with space-time coprime sampling structure," IEEE Access, Vol. 6, 20031-20046, Apr. 2018.
doi:10.1109/ACCESS.2018.2822046        Google Scholar

30. Vouras, P., "Fully adaptive space-time processing on nested arrays," Proc. IEEE Radar Con. (RadarCon), 0858-0863, Arlington, VA, USA, 2015.        Google Scholar

31. Yang, M., L. Sun, X. Yuan, and B. Chen, "Improved nested array with hole-free DCA and more degrees of freedom," IEEE Trans. Signal Process., Vol. 52, No. 25, 2068-2070, Dec. 2016.        Google Scholar