Vol. 125
Latest Volume
All Volumes
PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-10-25
Reconfigurable Hybrid Metal-Graphene UWB Filters for Terahertz Applications
By
Progress In Electromagnetics Research C, Vol. 125, 241-251, 2022
Abstract
This paper presents the design, analysis, and developments of a reconfigurable hybrid metal-graphene filter for terahertz applications. In fact, through the graphene material, we can reconfigure both the resonance frequency and the bandwidth. Further, the variation in chemical potential, relaxation times, and temperature of graphene provides excellent proprieties performances, with a variation of the resonant frequency from 8.60 THz to 8.85 THz, good return loss reaching -22.94 dB and a bandwidth reconfiguration from 1.717 THz to 1.930 THz. The simulation of the proposed filter is performed using CST software.
Citation
Hamza Ben Krid, Zied Houaneb, and Hassen Zairi, "Reconfigurable Hybrid Metal-Graphene UWB Filters for Terahertz Applications," Progress In Electromagnetics Research C, Vol. 125, 241-251, 2022.
doi:10.2528/PIERC22091905
References

1. Kuman, A., K. Sharma, and A. Dixit, "A review of the mechanical and thermal properties of graphene and its hybrid polymer nanocomposites for structural applications," Journal of Materials Science, Vol. 52, 5992-6026, 2019.        Google Scholar

2. Das, S., Y. S. Kang, and A. Dixit, "Graphene synthesis and application for solar cells," Journal of Materials Research, Vol. 29, 299-319, 2014.
doi:10.1557/jmr.2013.297        Google Scholar

3. Costantine, J., et al. "Reconfigurable antenna design and application," Proceeding of the IEEE, Vol. 103, 424-437, 2015.
doi:10.1109/JPROC.2015.2396000        Google Scholar

4. Azizi, M. K., M. A. Ksiksi, H. Ajlani, and A. Gharsallah, "Terahertz graphene-based reconfigurable patch antenna," Progress In Electromagnetics Research Letters, Vol. 71, 69-76, 2017.
doi:10.2528/PIERL17081402        Google Scholar

5. Ullah, Z., G. Witjaksono, et al. "A review on the development of tunable graphene nanoantennas for terahertz optoelectronic and plasmonic applications," Sensors, Vol. 20, 1401, 2020.
doi:10.3390/s20051401        Google Scholar

6. Serrano, D. S. and J. S. Diaz, "Graphene-based antennas for terahertz systems: A review, forum for electromagnetic research methods and application technologies,", 1-26, 2017.        Google Scholar

7. Khan, M., M. Abdul Kaium, and T. Ahmed, "A Graphene patch antennas with different substrate shapes and materials," International Journal for Lights and Electron Optics, Vol. 202, 163700, 2020.
doi:10.1016/j.ijleo.2019.163700        Google Scholar

8. Najafi, A., M. Soltani, and I. Chaharmahali, "Reliable design of THz absorbers based on graphene patterns: Exploiting genetic algorithm," International Journal for Lights and Electron Optics, Vol. 203, 163924, 2020.
doi:10.1016/j.ijleo.2019.163924        Google Scholar

9. Leonardo, V., H. Jin, et al. "Efficient terahertz detection in black-phosphorus nano-transistors with selective and controllable plasma-wave, bolometric and thermoelectric response," Scientific Reports, Vol. 6, 1-23, 2016.
doi:10.1038/s41598-016-0001-8        Google Scholar

10. Tang, W., A. Politano, et al. "Ultrasensitive room-temperature terahertz direct detection based on a bismuth selenide topological insulator," Advanced Functional Materials, 1-23, 2018.        Google Scholar

11. Elyan, H., O. Amin, et al. "Terahertz band: The last piece of RF spectrum puzzle communications," Open Journal on Society IEEE, Vol. 1, 1-32, 2019.        Google Scholar

12. Moon, K., I. Lee, et al. "Nano-gap electrode large area THz emitter for the enhanced emission efficiency and heat dissipation," IEEE 39th International Conference on Infrared Millimeter and Terahertz Waves, 1-2, 2014.        Google Scholar

13. Keshwala, U., S. Rawat, and K. RAy, "Design and analysis of DNA shaped antenna for terahertz and sub-terahertz applications," International Journal for Lights and Electron Optics, Vol. 232, 166512, 2021.
doi:10.1016/j.ijleo.2021.166512        Google Scholar

14. Krid, H. B., Z. Houaneb, and H. Zairi, "Dual-band reconfigurable graphene antenna for THz applications," 4th International Conferance on Advanced Systems and Emergent Technologies (IC- ASET), 79-82, 2020.        Google Scholar

15. Hlali, A., Z. Houaneb, and H. Zairi, "Tunable filter based on hybrid metal-graphene structures over an ultrawide terahertz and using an improved wave concept iterative process method," International Journal for Light and Electron Optics, Vol. 181, 423-431, 2018.
doi:10.1016/j.ijleo.2018.12.091        Google Scholar

16. Hossain, M., M. Muktadhir, and Md. Masud Rana, "Modeling graphene macroscopic and microscopic conductivity in the sub-cell FDTD method," International Conference on Electrical & Electronic Engineering (ICEEE), 53-56, IEEE, 2015.
doi:10.1109/CEEE.2015.7428290        Google Scholar

17. Krid, H. B., Z. Houaneb, H. Zairi, A. Hlali, Z. Houaneb, and H. Zairi, "Reconfigurable graphene annular ring antenna for medical and imaging applications," Progress In Electromagnetics Research M, Vol. 89, 53-62, 2020.
doi:10.2528/PIERM19110803        Google Scholar

18. Hlali, A., Z. Houaneb, and H. Zairi, "Tunable attenuator based on hybrid graphene-black phosphorus microstrip line for terahertz applications," International Journal for Light and Electron Optics, Vol. 2021, 164827, 2020.
doi:10.1016/j.ijleo.2020.164827        Google Scholar

19. Dash, S. and A. Patnaik, "Material selection for THZ antennas," Microwave and Optical Technology Letters, Vol. 60, 1183-1187, 2018.
doi:10.1002/mop.31127        Google Scholar

20. Mbayachi, V. B., E. Ndayiragije, et al. "Graphene synthesis characterization and its applications: A review," Results in Chemistry, Vol. 3, 100163, 2021.
doi:10.1016/j.rechem.2021.100163        Google Scholar

21. Wei, X., T. Lv, et al. "A graphene-metamaterial hybrid structure for the design of reconfigurable low pass terahertz filters,", Vol. 63, No. 3, 817-882, 2020.        Google Scholar

22. Joshi, N. and P. Pathak, "Concurrent dual-band tunable graphene based band-pass filter," 11th International Conference on Industrial and Information Systems (ICIIS), 218-223, IEEE, 2016.        Google Scholar

23. Zhai, M., H. Peng, et al. "Modeling tunable graphene-based filters using leapfrog ADI-FDTD method," IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), 1-3, IEEE, 2015.        Google Scholar