1. Ghassemi, N. and K. Wu, "High-efficient patch antenna array for E-band gigabyte point-to-point wireless services," IEEE Antennas Wirel. Propag. Lett., Vol. 11, 1261-1264, Oct. 2012.
doi:10.1109/LAWP.2012.2224087 Google Scholar
2. Kim, D. Y., Y. Lim, H. S. Yoon, and S. Nam, "High-efficiency W-band electroforming slot array antenna," IEEE Trans. Antennas Propag., Vol. 63, 1854-1857, Apr. 2015.
doi:10.1109/TAP.2015.2398129 Google Scholar
3. Nasimuddin, K. Esselle, and A. K. Verma, "Compact circularly polarized enhanced gain microstrip antenna on high permittivity substrate," Asia-Pacific Microwave Conference Proceedings, Mar. 2006. Google Scholar
4. Munk, A. B., Frequency Selective Surfaces: Theory and Design, John Wiley & Sons, Jan. 2005.
5. Lee, Y. J., J. Yeo, R. Mittra, and W. S. Park, "Design of a high-directivity electromagnetic band gap (EBG) resonator antenna using a frequency-selective surface (FSS) superstrate," Microw. Opt. Technol. Lett., Vol. 43, 462-467, Oct. 2004.
doi:10.1002/mop.20502 Google Scholar
6. Yang, F. R., K. P. Ma, Y. Qian, and T. Itoh, "A uniplanar compact photonic-bandgap (UC-PBG) structure and its applications for microwave circuit," IEEE Trans. Microw. Theory Techn., Vol. 47, 1509-1514, Aug. 1999.
doi:10.1109/22.780402 Google Scholar
7. Yuehe, G., P. E. Karu, and S. B. Trevor, "The use of simple thin partially reflective surfaces with positive re ection phase gradients to design wideband, low-profile EBG resonator antennas," IEEE Trans. Antennas Propag., Vol. 60, 743-750, Oct. 2012. Google Scholar
8. Nikfalazar, M., et al., "Two-dimensional beam-steering phased-array antenna with compact tunable phase shifter based on BST thick films," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 586-588, 2017.
doi:10.1109/LAWP.2016.2591078 Google Scholar
9. Aslan, Y., J. Puskely, J. H. J. Janssen, M. Geurts, A. Roederer, and A. Yarovoy, "Thermal-aware synthesis of 5G base station antenna arrays: An overview and a sparsity-based approach," IEEE Access, Vol. 6, 58868-58882, 2018.
doi:10.1109/ACCESS.2018.2873977 Google Scholar
10. Abdellatif, A. S. M., High performance integrated beam-steering techniques for millimeter-wave systems, Univ. Waterloo, Waterloo, ON, USA, 2015.
11. Ghasemi, A., et al., "High beam steering in Fabry-Perot leaky-wave antennas," IEEE Antennas Wirel. Propag. Lett., Vol. 12, 261-264, 2013.
doi:10.1109/LAWP.2013.2248052 Google Scholar
12. Nakano, H., S. Mitsui, and J. Yamauchi, "Tilted-beam high gain antenna system composed of a patch antenna and periodically arrayed loops," IEEE Trans. Antennas Propag., Vol. 62, 2917-2925, 2014.
doi:10.1109/TAP.2014.2311460 Google Scholar
13. Katare, K. K., A. Biswas, and M. J. Akhtar, "Microwave beam steering of planar antennas by hybrid phase gradient metasurface structure under spherical wave illumination," J. Appl. Phys., Vol. 122, 234901, 2017.
doi:10.1063/1.5000999 Google Scholar
14. Katare, K. K., A. Biswas, and M. J. Akhtar, "Wideband beam-steerable configuration of metasurface loaded slot antenna," Int. J. RF. Microwave Comput. Aid Eng., e21408, 2018.
doi:10.1002/mmce.21408 Google Scholar
15. Trentini, G. V., "Partially reflecting sheet array," IRE Trans. Antennas Propag., Vol. 4, 666-671, 1956.
doi:10.1109/TAP.1956.1144455 Google Scholar
16. Chen, X., M. T. Grzegorczyk, B. I. Wu, J. Pacheco, Jr., and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Phys. Rev. E, Vol. 70, 16608, Jul. 2004.
doi:10.1103/PhysRevE.70.016608 Google Scholar
17. Li, D., Z. Szabo, X. Qing, E. Li, and Z. N. Chen, "A high gain antenna with an optimized metamaterial inspired superstrate," IEEE Trans. Antennas Propag., Vol. 60, 6018-6023, Aug. 2012.
doi:10.1109/TAP.2012.2213231 Google Scholar
18. Reis, J. R., M. Vala, T. E. Oliveira, T. R. Fernandes, and R. F. S. Caldeirinha, "Metamaterial-inspired flat beamsteering antenna for 5G base stations at 3.6 GHz," Sensors, Vol. 21, 8116, Dec. 2021.
doi:10.3390/s21238116 Google Scholar
19. Luo, Y., Q. Zeng, X. Yan, T. Jiang, R. Yang, J. Wang, Y. Wu, Q. Lu, and X. Zhang, "A graphene-based tunable negative refractive index metamaterial and its application in dynamic beam-tilting terahertz antenna," Microw. Opt. Technol. Lett., Vol. 61, No. 12, 2766-2772, Dec. 2019.
doi:10.1002/mop.31970 Google Scholar
20. Kumar, S., L. Kurra, M. Abegaonkar, A. Basu, and S. K. Koul, "Multilayer FSS for gain improvement of a wide-band stacked printed antenna," 2015 International Symposium Antennas Propagation (ISAP), 1-4, Hobart, TAS, 2015. Google Scholar
21. Kurra, L., M. P. Abegaonkar, A. Basu, and S. K. Koul, "FSS properties of a uniplanar EBG and its application in directivity enhancement of a microstrip antenna," IEEE Antennas Wirel. Propag. Lett., Vol. 15, 1606-1609, 2016.
doi:10.1109/LAWP.2016.2518299 Google Scholar
22. Zhu, H., S. W. Cheung, and T. I. Yuk, "Enhancing antenna boresight gain using a small metasurface lens: Reduction in half-power beamwidth," IEEE Antennas Propag. Mag., Vol. 58, 35-44, Feb. 2016.
doi:10.1109/MAP.2015.2501235 Google Scholar
23. Ma, B., X. M. Yang, T. Q. Li, H. Y. Chenc, H. Hed, Y. W. Chend, A. Line, J. Chenf, and B. J. Wangg, "Gain and directivity enhancement of microstrip antenna loaded with multiple splits octagon-shaped metamaterial superstrate," Int. J. Appl. Electromagn., Vol. 58, 201-213, 2016. Google Scholar
24. Gangwar, D., D. Sushrut, and R. L. Yadava, Gain Enhancement of Microstrip Patch Antenna Loaded with Split Ring Resonator Based Relative Permeability Near Zero as Superstrate, Vol. 96, 22389-22399, Springer, Sept. 2017.
25. Aggarwal, I., S. Pandey, and M. R. Tripathy, "A high gain super wideband metamaterial based antenna," J. Microw. Optoelectron. Electromagn. Application, Vol. 20, No. 2, 248-273, Jun. 2021.
doi:10.1590/2179-10742021v20i21147 Google Scholar
26. Sumathi, K., S. Lavadiya, P. Yin, J. Parmar, and S. K. Patel, "High gain multiband and frequency reconfigurable metamaterial superstrate microstrip patch antenna for C/X/Ku band wireless network applications," Wireless Networks, Vol. 27, 2131-2146, 2021.
doi:10.1007/s11276-021-02567-5 Google Scholar