Vol. 127
Latest Volume
All Volumes
PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-11-27
Polarization Reversal of Oblique Electromagnetic Wave in Collisional Beam-Hydrogen Plasma
By
Progress In Electromagnetics Research C, Vol. 127, 49-59, 2022
Abstract
Energetic ion or electron beams cause plasma instabilities. Depending on plasma and the beam parameters, an ion beam leads to change in the dispersion relation of Alfven waves on interacting with magnetoplasmas as it can efficiently transfer its energy to the plasma. We have derived dispersion relation and the growth rates for oblique shear Alfven wave in hydrogen plasma. The particles of the beam interact with the Shear Alfven waves only when they counter-propagate each other and destabilize left-hand polarized mode for parallel waves and left-hand as well as right-hand polarized modes for oblique waves, via fast cyclotron interaction. The collisions between beam ions and plasma components affect the growth rate and the frequency of generated Alfven waves, differently for right-hand (RH) and left-hand (LH) polarized oblique Alfven modes. For (ω + kzvbo > ωbc), the most unstable mode is the LH polarized oblique Alfven mode, and it is the RH polarized oblique Alfven mode for (ω + kzvbo < ωbc), which shows a polarization reversal after resonance condition. Numerical results indicate that the growth rates increase with increase in angle of propagation. The maximum growth rate values in the presence or absence of beam increase due to obliquity of wave.
Citation
Rajesh Gupta Ruby Gupta Suresh C. Sharma , "Polarization Reversal of Oblique Electromagnetic Wave in Collisional Beam-Hydrogen Plasma," Progress In Electromagnetics Research C, Vol. 127, 49-59, 2022.
doi:10.2528/PIERC22092526
http://www.jpier.org/PIERC/pier.php?paper=22092526
References

1. Gekelman, W., Vincena, D. S. Leneman, and J. Maggs, "Laboratory experiments on shear Alfven waves and their relationship to space plasmas," J. Geophys Res., Vol. 102, No. A4, 7225-7236, 1997.
doi:10.1029/96JA03683

2. Chen, L. and F. Zonca, "Physics of Alfven waves and energetic particles in burning plasmas," Rev. Mod. Phys., Vol. 88, No. 1, 015008, 2016.
doi:10.1103/RevModPhys.88.015008

3. Jephcott, D. F. and P. M. Stocker, "Hydromagnetic waves in a cylindrical; plasma: An experiment," J. Fluid Mech., Vol. 13, No. 4, 587-596, 1962.
doi:10.1017/S0022112062000956

4. Dwivedi, A. K., S. Kumar, and M. S. Tiwari, "Effect of ion and electron beam on kinetic Alfven wave in an inhomogeneous magnetic field," Astrophys. Space Sci., Vol. 350, No. 2, 547-556, 2014.
doi:10.1007/s10509-013-1760-3

5. Prakash, V., R. Gupta, S. C. Sharma, and Vijayshri, "Excitation of lower hybrid wave by an ion beam in magnetized plasma," Laser Part. Beams, Vol. 31, No. 4, 747-752, 2013.
doi:10.1017/S0263034613000591

6. Gupta, R., V. Prakash, S. C. Sharma, and Vijayshri, "Interaction of an electron beam with whistler waves in magnetoplasmas," Laser Part. Beams, Vol. 33, No. 3, 455-461, 2015.
doi:10.1017/S0263034615000506

7. Gupta, R., V. Prakash, S. C. Sharma, Vijayshri, and D. N. Gupta, "Resonant ion beam interaction with Whistler waves in a magnetized dusty plasma," J. Atomic, Molecular, Condensate and Nano Physics, Vol. 3, No. 1, 45-53, 2016.
doi:10.26713/jamcnp.v3i1.385

8. Prakash, V., R. Gupta, Vijayshri, and S. C. Sharma, "Excitation of electromagnetic surface waves at a conductor-plasma interface by an electron beam," J. Atomic, Molecular, Condensate and Nano Physics, Vol. 3, No. 1, 35-43, 2016.
doi:10.26713/jamcnp.v3i1.384

9. Prakash, V. and S. C. Sharma, "Excitation of surface plasma waves by an electron beam in a magnetized dusty plasma," Phys. Plasmas., Vol. 16, No. 9, 93703, 2009.
doi:10.1063/1.3216918

10. Prakash, V., S. C. Sharma, Vijayshri, and R. Gupta, "Surface wave excitation by a density modulated electron beam in a magnetized dusty plasma cylinder," Laser Part. Beams, Vol. 31, 411-418, 2013.
doi:10.1017/S0263034612001048

11. Shoucri, M. M. and R. R. J. Gagne, "Excitation of lower hybrid waves by electron beams in finite geometry plasmas. Part 1. Body waves," J. Plasma Phys., Vol. 19, No. 2, 281-294, 1978.
doi:10.1017/S0022377800023242

12. Rubab, N. and G. Jaffer, "Excitation of dust kinetic Alfven waves by semi-relativistic ion beams," Phys. Plasmas., Vol. 23, No. 5, 053701, 2016.
doi:10.1063/1.4948490

13. Shevchenko, V. I., V. L. Galinsky, and S. K. Ride, "Excitation of left-hand-polarized nonlinear Alfven waves by an ion beam in a plasma," J. Geophys. Res., Vol. 107, No. A11, 1-12, 2002.

14. Amagishi, Y. and M. Tanaka, "Ion-neutral collision effect on an Alfven wave," Phys. Rev. Lett., Vol. 71, No. 3, 360-363, 1993.
doi:10.1103/PhysRevLett.71.360

15. Tripathi, S. K. P., B. V. Compernolle, W. Gekelman, P. Pribyl, and W. Heidbrink, "Excitation of shear Alfven waves by a spiraling ion beam in a large magnetoplasma," Phys. Rev. E, Vol. 91, No. 1, 1-5, 2015.
doi:10.1103/PhysRevE.91.013109

16. Zhang, Y., W. W. Heidbrink, H. Boehmer, R. McWilliams, S. Vincena, T. A. Carter, W. Gekelman, D. Leneman, and P. Pribyl, "Observation of fast-ion Doppler-shifted cyclotron resonance with shear Alfven waves," Phys. Plasmas., Vol. 15, No. 10, 102112, 2008.
doi:10.1063/1.2996323

17. Soler, R., J. L. Ballester, and T. V. Zaqarashvili, "Overdamped Alfven waves due to ion-neutral collisions in the solar chromospheres," A & A, Vol. 573, 79-91, 2014.

18. Shukla, P. K. and L. Stenflo, "Periodic structures on an ionic-plasma-vacuum interface," Phys. Plasmas., Vol. 12, No. 4, 0845021, 2005.
doi:10.1063/1.1867494

19. Shukla, P. K., M. Y. Yu, and L. Stenflo, "Growth rates of modulationally unstable ion-cyclotron Alfven waves," Phys. Scr., Vol. 34, No. 2, 169-170, 1986.
doi:10.1088/0031-8949/34/2/015

20. Lu, X. Q., W. Z. Tang, W. Guo, and X. Y. Gong, "A study on interactions between ions and polarized Alfven waves below cyclotron resonance frequency," Phys. Plasmas., Vol. 23, No. 12, 1-5, 2016.
doi:10.1063/1.4972075

21. Hollweg, J. V. and S. A. Markovskii, "Cyclotron resonances of ions with oblique propagating waves in coronal holes & the fast sdolar wind," J. Geophys. Res., Vol. 107, No. A6, 1-7, 2002.

22. Li, X. and Q. M. Lu, "Heating and deceleration of minor ions in the extended fast solar wind by oblique Alfven waves," J. Geophys. Res., Vol. 115, No. A48, A08105, 2010.

23. Hellinger, P. and A. Mangeney, "Structure of low mach number oblique shock waves," Correlated Phenomena at the Sun, in the Heliosphere and in Geospace, 337-340, 1997.

24. Hellinger, P. and A. Mangeney, "Electromagnetic ion beam instabilities --- Oblique pulsation," J. Geophys. Res. Atmos., Vol. 104, No. A3, 4669-4680, 1999.
doi:10.1029/1998JA900157

25. Verscharen, D. and B. D. G. Chandran, "The dispersion relations and instability thresholds of oblique plasma modes in the presence of an ion beam," Astrophys. J., Vol. 764, No. 1, 1-12, 2013.
doi:10.1088/0004-637X/764/1/88

26. Maneva, Y. G., A. F. Vinas, P. S. Moya, R. T. Wicks, and S. Poedts, "Dissipation of parallel & oblique Alfven-cyclotron waves --- Implications for heating of alpha particles in the solar wind," Astrophys. J., Vol. 814, No. 1, 1-15, 2015.
doi:10.1088/0004-637X/814/1/33

27. Gao, X., Q. Lu, X. Li, C. Huang, and S. Wang, "Heating of the background plasma by obliquely propagating Alfven waves excited in electromagnetic alpha/proton instability," Phys. Plasmas., Vol. 19, No. 3, 1-5, 2012.
doi:10.1063/1.3693373

28. Xiang, L., D. J. Wu, and L. Chen, "Effect of alpha beams on low-frequency electromagnetic waves driven by proton beams," Astrophy. J., Vol. 869, No. 64, 1-10, 2018.