Vol. 127
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-11-28
A Dual Adaptive Inertia and Damping Control Strategy of ANFIS-VSG for Direct-Drive Permanent Magnet Synchronous Wind Generator Systems
By
Progress In Electromagnetics Research C, Vol. 127, 71-82, 2022
Abstract
In the conventional virtual synchronous generator (VSG) dual adaptive inertia and damping control schemes, the inertia J and damping D exhibit different variation patterns in different time intervals and are mutually constrained. To address this problem, an adaptive neural-fuzzy network inference system (ANFIS)-based dual adaptive inertia and damping VSG control technique applied to the direct-drive permanent magnet synchronous wind generator (D-PMSWG) system is proposed in this paper. In ANFIS-VSG, the controller is designed on the basis of the ANFIS control principle, and the input and output data are collected by PID control. The Sugeno-type ANFIS controller model is adopted to train the fuzzy inference system (FIS) online. Moreover, the virtual inertia and damping coefficients can be dynamically adjusted in real time according to the frequency variation without taking the different variations and mutual constraints of inertia J and damping D in different intervals into consideration, so the design difficulty and calculation process can be simplified, and the accuracy of the proposed control algorithm is enhanced through training. Furthermore, when the system is subject to load changes, integrating into the grid from an islanded state, and when the output power sets value steps, the power-frequency characteristics and the anti-interference capability of the three-phase output current of VSG can be improved. Finally, the proposed control strategy is simulated and analyzed based on Matlab/Simulink simulation software, which proves the correctness and effectiveness of the proposed control algorithm.
Citation
Yang Zhang, Anping Chen, Jiangwei Deng, Yihan Liu, Sicheng Li, and Zhun Cheng, "A Dual Adaptive Inertia and Damping Control Strategy of ANFIS-VSG for Direct-Drive Permanent Magnet Synchronous Wind Generator Systems," Progress In Electromagnetics Research C, Vol. 127, 71-82, 2022.
doi:10.2528/PIERC22100303
References

1. Prajapati, B. and M. C. Chudasama, "Modeling of grid connected PMSG based WECS," 2020 IEEE International Power and Renewable Energy Conference, 1-6, Karunagappally, India, 2020.

2. Belkhier, Y. and A. Y. Achour, "Passivity-based current control strategy for PMSG wind turbine," 2019 1st International Conference on Sustainable Renewable Energy Systems and Applications (ICSRESA), 1-4, Tebessa, Algeria, 2019.

3. Mi, D., T. Wang, M. Gao, and Z. Wang, "Small signal stability analysis of PMSG-VSG and optimal design for control parameters," 2020 IEEE Power & Energy Society General Meeting (PESGM), 1-5, Montreal, QC, Canada, 2020.

4. Sun, B., Z. Chen, C. Gao, A. Haddad, J. Liang, and X. Liu, "A power decoupling control for wind power converter based on series-connected MMC and open-winding PMSG," IEEE Transactions on Industrial Electronics, Vol. 69, No. 8, 8091-8101, Aug. 2022.
doi:10.1109/TIE.2021.3099227

5. Wang, T., S. Huang, M. Gao, and Z. Wang, "Adaptive extended Kalman filter based dynamic equivalent method of PMSG wind farm cluster," IEEE Transactions on Industry Applications, Vol. 57, No. 3, 2908-2917, May-June 2021.
doi:10.1109/TIA.2021.3055749

6. Xu, S., S. Tao, W. Zheng, Y. Chai, M. Ma, and L. Ding, "Multiple open-circuit fault diagnosis for back-to-back converter of PMSG wind generation system based on instantaneous amplitude estimation," IEEE Transactions on Instrumentation and Measurement, Vol. 70, 1-13, Art No. 3512413, 2021.

7. Wu, Z., X. Zou, X. Yuan, and W. Xiong, "Review on virtual synchronous generator technologies," The 16th IET International Conference on AC and DC Power Transmission (ACDC 2020), 744-751, Online Conference, 2020.

8. Wang, D., J. Tang, and J. Qiao, "Review of VSG for industrial process data regression modeling," 2021 40th Chinese Control Conference (CCC), 1316-1321, Shanghai, China, 2021.
doi:10.23919/CCC52363.2021.9549875

9. Cheng, C., H. Yang, Z. Zeng, S. Tang, and R. Zhao, "Rotor inertia adaptive control method of virtual synchronous generator," Power System Automation, Vol. 39, No. 19, 82-89, 2015.

10. Zhu, Z., S. Huang, Z. Li, and Y. Xiao, "Research on control strategy for micro-grid adaptive rotating inertia virtual synchronous generator," Proceedings of the CSU-EPSA, Vol. 32, No. 4, 111-115, 2020.

11. Li, J., B. Wen, and H. Wang, "Adaptive virtual inertia control strategy of VSG for micro-grid based on improved bang-bang control strategy," IEEE Access, Vol. 7, 39509-39514, 2019.
doi:10.1109/ACCESS.2019.2904943

12. Ke, X., W. Zhang, P. Li, S. Niu, S. Sheng, and J. Yang, "Fuzzy adaptive virtual inertia control for high wind power penetration system," Power System Technology, Vol. 44, No. 6, 2127-2136, 2020.

13. Lao, H., L. Zhang, T. Zhao, and L. Zou, "Frequency regulation strategy for DFIG combining over-speed control and adaptive virtual inertia," 2019 IEEE Innovative Smart Grid Technologies --- Asia (ISGT Asia), 1663-1666, Chengdu, China, 2019.
doi:10.1109/ISGT-Asia.2019.8881628

14. Yue, J., X. Zhang, P. Zhou, and T. Tong, "Virtual synchronization control strategy for double-fed wind turbines based on adaptive inertia damping," Proceedings of the CSU-EPSA, Vol. 33, No. 9, 40-48, 2021.

15. Li, S., W. Wang, S. Qin, X. Zhang, and C. Li, "Fuzzy adaptive virtual inertia control strategy of wind turbines based on system frequency response interval division," Power System Technology, Vol. 45, No. 5, 1658-1665, 2021.

16. Li, D., Q. Zhu, S. Lin, and X. Y. Bian, "A self-adaptive inertia and damping combination control of VSG to support frequency stability," IEEE Transactions on Energy Conversion, Vol. 32, No. 1, 397-398, March 2017.
doi:10.1109/TEC.2016.2623982

17. Wang, Q., D. Zhou, S. Yin, Y. Lei, and T. He, "Improved adaptive inertia and damping coefficient control strategy of VSG based on optimal damping ratio," 2022 International Power Electronics Conference (IPEC-Himeji 2022 --- ECCE Asia), 102-107, Himeji, Japan, 2022.
doi:10.23919/IPEC-Himeji2022-ECCE53331.2022.9806825

18. Ban, G., Y. Xu, D. Guo, W. Zhou, H. Zheng, and X. Yuan, "Research on adaptive VSG control strategy based on inertia and damping," 2021 IEEE Sustainable Power and Energy Conference (iSPEC), 1584-1589, Nanjing, China, 2021.
doi:10.1109/iSPEC53008.2021.9735506

19. Ding, J., J. Zhang, and Z. Ma, "VSG inertia and damping coefficient adaptive control," 2020 Asia Energy and Electrical Engineering Symposium (AEEES), 431-435, Chengdu, China, 2020.

20. Gong, R. and J. Gu, "Adaptive control strategy of inertia and damping for load virtual synchronous machine," Electrical Measurement & Instrumentation, 1-7, 2021.

21. Li, D., Q. Zhu, Y. Cheng, Q. Liu, S. Lin, F. Yang, and X. Bian, "Control strategy of virtual synchronous generator based on adaptive inertia damping integrated control algorithm," Electr. Power Automation Equip., Vol. 37, No. 11, 72-77, 2017.

22. Hsu, C. F. and B. K. Lee, "FPGA-based adaptive PID control of a DC motor driver via sliding-mode approach," Expert Systems with Applications, Vol. 38, No. 9, 11866-11872, 2011.
doi:10.1016/j.eswa.2011.02.185

23. Hou, B. J., J. S. Gao, X. Q. Li, et al. "Study on repetitive PID control of linear motor in wafer stage of lithography," Procedia Engineering, Vol. 29, No. 1, 3863-3867, 2012.
doi:10.1016/j.proeng.2012.01.585

24. Yang, J., C. Shang, Y. Li, F. Li, L. Shen, and Q. Shen, "Constructing ANFIS with sparse data through group-based rule interpolation: An evolutionary approach," IEEE Transactions on Fuzzy Systems, Vol. 30, No. 4, 893-907, April 2022.
doi:10.1109/TFUZZ.2021.3049949

25. Pournazarian, B., R. Sangrody, M. Saeedian, O. Gomis-Bellmunt, and E. Pouresmaeil, "Enhancing microgrid small-signal stability and reactive power sharing using ANFIS-tuned virtual inductances," IEEE Access, Vol. 9, 104915-104926, 2021.
doi:10.1109/ACCESS.2021.3100248