1. Sabharwal, A., P. Schniter, D. Guo, D. W. Bliss, S. Rangarajan, and R. Wichman, "In-band full-duplex wireless: Challenges and opportunities," IEEE Journal on Selected Areas in Communications, Vol. 32, No. 9, 1637-1652, 2014.
doi:10.1109/JSAC.2014.2330193 Google Scholar
2. Makar, G., N. Tran, and T. Karacolak, "A high-isolation monopole array with ring hybrid feeding structure for in-band full-duplex systems," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 356-359, 2017.
doi:10.1109/LAWP.2016.2577003 Google Scholar
3. Zhang, Y. M., S. Zhang, J. L. Li, and G. F. Pedersen, "A dual-polarized linear antenna array with improved isolation using a slotline-based 180◦ hybrid for full-duplex applications," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 2, 348-352, 2019.
doi:10.1109/LAWP.2019.2890983 Google Scholar
4. Ta, S. X., N. Nguyen-Trong, V. C. Nguyen, K. K. Nguyen, and C. Dao-Ngoc, "Broadband dual-polarized antenna using metasurface for full-duplex applications," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 2, 254-258, 2021.
doi:10.1109/LAWP.2020.3047231 Google Scholar
5. Kirtania, S. G., A. W. Elger, M. Hasan, A. Wisniewska, T. Karacolak, and P. K. Sekhar, "Flexible antennas: A review," Micromachines, Vol. 11, No. 9, 847, 2020.
doi:10.3390/mi11090847 Google Scholar
6. Memon, A. W., I. L. de Paula, B. Malengier, S. Vasile, P. Van Torre, and L. Van Langenhove, "Breathable textile rectangular ring microstrip patch antenna at 2.45 GHz for wearable applications," Sensors, Vol. 21, No. 5, 1635, 2021.
doi:10.3390/s21051635 Google Scholar
7. Ahmed, M. I., M. F. Ahmed, and A. H. A. Shaalan, "Novel electro-textile patch antenna on jeans substrate for wearable applications," Progress In Electromagnetics Research C, Vol. 83, 255-265, 2018.
doi:10.2528/PIERC18030309 Google Scholar
8. Nikbakhtnasrabadi, F., H. El Matbouly, M. Ntagios, and R. Dahiya, "Textile-based stretchable microstrip antenna with intrinsic strain sensing," ACS Applied Electronic Materials, Vol. 3, No. 5, 2233-2246, 2021.
doi:10.1021/acsaelm.1c00179 Google Scholar
9. Kirtania, S. G., B. A. Younes, A. R. Hossain, T. Karacolak, and P. K. Sekhar, "CPW-fed flexible ultra-wideband antenna for IoT applications," Micromachines, Vol. 12, No. 4, 453, 2021.
doi:10.3390/mi12040453 Google Scholar
10. Farooqui, M. F. and A. Kishk, "3-D-printed tunable circularly polarized microstrip patch antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 7, 1429-1432, 2019.
doi:10.1109/LAWP.2019.2919255 Google Scholar
11. Abutarboush, H. F., W. Li, and A. Shamim, "Flexible-screen-printed antenna with enhanced bandwidth by employing defected ground structure," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 10, 1803-1807, 2020.
doi:10.1109/LAWP.2020.3019462 Google Scholar
12. Tran, N. A., H. N. Tran, M. C. Dang, and E. Fribourg-Blanc, "Copper thin film for RFID UHF antenna on flexible substrate," Advances in Natural Sciences: Nanoscience and Nanotechnology, Vol. 1, No. 2, 025016, 2010.
doi:10.1088/2043-6254/1/2/025016 Google Scholar
13. El Maleky, O., F. B. Abdelouahab, M. Essaaidi, and M. A. Ennasar, "Design of simple printed dipole antenna on flexible substrate for UHF band," Procedia Manufacturing, Vol. 22, 428-435, 2018.
doi:10.1016/j.promfg.2018.03.067 Google Scholar
14. Chen, S. J., C. Fumeaux, B. Chivers, and R. Shepherd, "A 5.8-GHz flexible microstrip-fed slot antenna realized in PEDOT: PSS conductive polymer," Proc. IEEE International Symposium on Antennas and Propagation (APSURSI), 1317-1318, June 2016. Google Scholar
15. Kadry, M., M. El Atrash, and M. A. Abdalla, "Design of an ultrathin compact flexible dual-band antenna for wearable applications," Proc. IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 1949-1950, July 2018. Google Scholar
16. Jalil, M., M. Rahim, N. Samsuri, N. Murad, N. Othman, and H. Majid, "On-body investigation of dual-band diamond textile antenna for wearable applications at 2.45 GHz and 5.8 GHz," Proc. 7th European Conference on Antennas and Propagation (EuCAP), 414-417, April 2013. Google Scholar
17. Hamouda, Z., J. L. Wojkiewicz, A. A. Pud, L. Kone, S. Bergheul, and T. Lasri, "Flexible UWB organic antenna for wearable technologies application," IET Microwaves, Antennas & Propagation, Vol. 12, No. 2, 160-166, 2018.
doi:10.1049/iet-map.2017.0189 Google Scholar
18. Du, C. Z., K. J. Li, and S. S. Zhong, "A novel flexible hexagon wideband CPW-fed monopole antenna for UWB applications," Microwave and Optical Technology Letters, Vol. 63, No. 7, 1899-1905, 2021.
doi:10.1002/mop.32832 Google Scholar
19. Mao, C. X., Y. Zhou, Y. Wu, H. Soewardiman, D. H. Werner, and J. S. Jur, "Low-profile strip-loaded textile antenna with enhanced bandwidth and isolation for full-duplex wearable applications," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 9, 6527-6537, 2020.
doi:10.1109/TAP.2020.2989862 Google Scholar
20. Wagih, M., G. S. Hilton, A. S. Weddell, and S. Beeby, "Dual-polarized wearable antenna/rectenna for full-duplex and MIMO Simultaneous Wireless Information and Power Transfer (SWIPT)," IEEE Open Journal of Antennas and Propagation, Vol. 2, 844-857, 2021.
doi:10.1109/OJAP.2021.3098939 Google Scholar
21. Mao, C. X., D. Vital, D. H. Werner, Y. Wu, and S. Bhardwaj, "Dual-polarized embroidered textile armband antenna array with omnidirectional radiation for on-/off-body wearable applications," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 4, 2575-2584, 2020.
doi:10.1109/TAP.2019.2951517 Google Scholar
22. Mallat, N. K. and A. Iqbal, "Substrate integrated waveguide-based simultaneous transmit and receive antenna for full-duplex wearable devices," International Journal of RF and Microwave Computer-aided Engineering, e23188, 2022. Google Scholar
23. Hossain, A. R., A. A. Mertvyy, N. Tran, and T. Karacolak, "A high gain flexible antenna for full duplex system at 5.8 GHz with defected ground structure," Proc. IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI), 1040-1041, July 2022. Google Scholar
24. Guha, D., M. Biswas, and Y. M. Antar, "Microstrip patch antenna with defected ground structure for cross polarization suppression," IEEE Antennas and Wireless Propagation Letters, Vol. 4, 455-458, 2005.
doi:10.1109/LAWP.2005.860211 Google Scholar
25. Sung, Y., M. Kim, and Y. S. Kim, "Harmonics reduction with defected ground structure for a microstrip patch antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 2, 111-113, 2003.
doi:10.1109/LAWP.2003.815281 Google Scholar
26. Chiang, K. H. and K. W. Tam, "Microstrip monopole antenna with enhanced bandwidth using defected ground structure," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 532-535, 2008.
doi:10.1109/LAWP.2008.2005592 Google Scholar
27. Chung, Y., S. S. Jeon, D. Ahn, J. I. Choi, and T. Itoh, "High isolation dual-polarized patch antenna using integrated defected ground structure," IEEE Microwave and Wireless Components Letters, Vol. 14, No. 1, 4-6, 2004.
doi:10.1109/LMWC.2003.821501 Google Scholar
28. Kumar, C., M. I. Pasha, and D. Guha, "Defected ground structure integrated microstrip array antenna for improved radiation properties," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 310-312, 2017.
doi:10.1109/LAWP.2016.2574638 Google Scholar
29. Weng, L. H., Y. C. Guo, X. W. Shi, and X. Q. Chen, "An overview on defected ground structure," Progress In Electromagnetics Research B, Vol. 7, 173-189, 2008.
doi:10.2528/PIERB08031401 Google Scholar
30. Doddipalli, S., A. Kothari, and P. Peshwe, "A low profile ultrawide band monopole antenna for wearable applications," International Journal of Antennas and Propagation, Vol. 2017, Art. No. 7362431, 2017. Google Scholar
31. Yang, H., X. Liu, Y. Fan, and L. Xiong, "Dual-band textile antenna with dual circular polarizations using polarization rotation AMC for off-body communications," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 6, 4189-4199, 2022.
doi:10.1109/TAP.2021.3138504 Google Scholar
32. Almohammed, B., A. Ismail, and A. Sali, "Electro-textile wearable antennas in wireless body area networks: Materials, antenna design, manufacturing techniques, and human body consideration --- A review," Textile Research Journal, Vol. 91, No. 5-6, 646-663, 2021.
doi:10.1177/0040517520932230 Google Scholar
33., IEEE standards for safety levels with respect to human exposure to electric, magnetic, and electromagnetic fields, 0 Hz to 300 GHz, IEEE Std. C95. 1-2019, 2019.
doi:10.1177/0040517520932230 Google Scholar
34. Zu, H. R., B.Wu, Y. H. Zhang, Y. T. Zhao, R. G. Song, and D. P. He, "Circularly polarized wearable antenna with low profile and low specific absorption rate using highly conductive graphene film," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 12, 2354-2358, 2020.
doi:10.1109/LAWP.2020.3033013 Google Scholar
35. Jiang, Z. H., Z. Cui, T. Yue, Y. Zhu, and D. H. Werner, "Compact, highly efficient, and fully flexible circularly polarized antenna enabled by silver nanowires for wireless body-area networks," IEEE Transactions on Biomedical Circuits and Systems, Vol. 11, No. 4, 920-932, 2017.
doi:10.1109/TBCAS.2017.2671841 Google Scholar
36. Samanta, G. and D. Mitra, "Dual-band circular polarized flexible implantable antenna using reactive impedance substrate," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 6, 4218-4223, 2019.
doi:10.1109/TAP.2019.2905978 Google Scholar
37. Hussein, A. H., H. H. Abdullah, M. A. Attia, and A. M. Abada, "S-band compact microstrip full-duplex Tx/Rx patch antenna with high isolation," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 10, 2090-2094, 2019.
doi:10.1109/LAWP.2019.2937769 Google Scholar
38. Wen, D., Y. Hao, M. O. Munoz, H.Wang, and H. Zhou, "A compact and low-profile MIMO antenna using a miniature circular high-impedance surface for wearable applications," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 1, 96-104, 2018.
doi:10.1109/TAP.2017.2773465 Google Scholar
39. Jayant, S., G. Srivastava, and S. Kumar, "Quad-port UWB MIMO footwear antenna for wearable applications," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 9, 7905-7913, 2022.
doi:10.1109/TAP.2022.3177481 Google Scholar
40. Wen, D., Y. Hao, H. Wang, and H. Zhou, "Design of a MIMO antenna with high isolation for smartwatch applications using the theory of characteristic modes," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 3, 1437-1447, 2019.
doi:10.1109/TAP.2018.2884849 Google Scholar