Vol. 127
Latest Volume
All Volumes
PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-12-03
Inkjet Printed Flexible High Isolation Patch Antenna for 5.8 GHz Full-Duplex Applications
By
Progress In Electromagnetics Research C, Vol. 127, 127-143, 2022
Abstract
In this paper, a flexible full-duplex antenna is proposed with robust performance and high isolation for 5.8 GHz using foam and PET paper. The patch of the antenna is modified by corner cut and inset feeding, while the defected ground structure is used to improve isolation between transmit and receive ports. Silver nanoparticle ink is used for printing the antenna in an inkjet printer. The fabricated version supports simulated results by showing acceptable performance in desired bandwidth. Bending tests and human body loading experiments are carried out on the fabricated antenna to demonstrate antenna's effectiveness for wearable applications. To the best of authors' knowledge, this is the first flexible full duplex antenna designed, achieving a high isolation level of -50 dB. Moreover, wide bandwidth, improved gain, radiation efficiency, low cost, easy fabrication, and robust performance make it a good option for 5.8 GHz wearable applications.
Citation
Abdul Rakib Hossain, Md. Samiul Islam Sagar, Nghi Tran, Praveen Kumar Sekhar, and Tutku Karacolak, "Inkjet Printed Flexible High Isolation Patch Antenna for 5.8 GHz Full-Duplex Applications," Progress In Electromagnetics Research C, Vol. 127, 127-143, 2022.
doi:10.2528/PIERC22101401
References

1. Sabharwal, A., P. Schniter, D. Guo, D. W. Bliss, S. Rangarajan, and R. Wichman, "In-band full-duplex wireless: Challenges and opportunities," IEEE Journal on Selected Areas in Communications, Vol. 32, No. 9, 1637-1652, 2014.
doi:10.1109/JSAC.2014.2330193        Google Scholar

2. Makar, G., N. Tran, and T. Karacolak, "A high-isolation monopole array with ring hybrid feeding structure for in-band full-duplex systems," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 356-359, 2017.
doi:10.1109/LAWP.2016.2577003        Google Scholar

3. Zhang, Y. M., S. Zhang, J. L. Li, and G. F. Pedersen, "A dual-polarized linear antenna array with improved isolation using a slotline-based 180 hybrid for full-duplex applications," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 2, 348-352, 2019.
doi:10.1109/LAWP.2019.2890983        Google Scholar

4. Ta, S. X., N. Nguyen-Trong, V. C. Nguyen, K. K. Nguyen, and C. Dao-Ngoc, "Broadband dual-polarized antenna using metasurface for full-duplex applications," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 2, 254-258, 2021.
doi:10.1109/LAWP.2020.3047231        Google Scholar

5. Kirtania, S. G., A. W. Elger, M. Hasan, A. Wisniewska, T. Karacolak, and P. K. Sekhar, "Flexible antennas: A review," Micromachines, Vol. 11, No. 9, 847, 2020.
doi:10.3390/mi11090847        Google Scholar

6. Memon, A. W., I. L. de Paula, B. Malengier, S. Vasile, P. Van Torre, and L. Van Langenhove, "Breathable textile rectangular ring microstrip patch antenna at 2.45 GHz for wearable applications," Sensors, Vol. 21, No. 5, 1635, 2021.
doi:10.3390/s21051635        Google Scholar

7. Ahmed, M. I., M. F. Ahmed, and A. H. A. Shaalan, "Novel electro-textile patch antenna on jeans substrate for wearable applications," Progress In Electromagnetics Research C, Vol. 83, 255-265, 2018.
doi:10.2528/PIERC18030309        Google Scholar

8. Nikbakhtnasrabadi, F., H. El Matbouly, M. Ntagios, and R. Dahiya, "Textile-based stretchable microstrip antenna with intrinsic strain sensing," ACS Applied Electronic Materials, Vol. 3, No. 5, 2233-2246, 2021.
doi:10.1021/acsaelm.1c00179        Google Scholar

9. Kirtania, S. G., B. A. Younes, A. R. Hossain, T. Karacolak, and P. K. Sekhar, "CPW-fed flexible ultra-wideband antenna for IoT applications," Micromachines, Vol. 12, No. 4, 453, 2021.
doi:10.3390/mi12040453        Google Scholar

10. Farooqui, M. F. and A. Kishk, "3-D-printed tunable circularly polarized microstrip patch antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 7, 1429-1432, 2019.
doi:10.1109/LAWP.2019.2919255        Google Scholar

11. Abutarboush, H. F., W. Li, and A. Shamim, "Flexible-screen-printed antenna with enhanced bandwidth by employing defected ground structure," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 10, 1803-1807, 2020.
doi:10.1109/LAWP.2020.3019462        Google Scholar

12. Tran, N. A., H. N. Tran, M. C. Dang, and E. Fribourg-Blanc, "Copper thin film for RFID UHF antenna on flexible substrate," Advances in Natural Sciences: Nanoscience and Nanotechnology, Vol. 1, No. 2, 025016, 2010.
doi:10.1088/2043-6254/1/2/025016        Google Scholar

13. El Maleky, O., F. B. Abdelouahab, M. Essaaidi, and M. A. Ennasar, "Design of simple printed dipole antenna on flexible substrate for UHF band," Procedia Manufacturing, Vol. 22, 428-435, 2018.
doi:10.1016/j.promfg.2018.03.067        Google Scholar

14. Chen, S. J., C. Fumeaux, B. Chivers, and R. Shepherd, "A 5.8-GHz flexible microstrip-fed slot antenna realized in PEDOT: PSS conductive polymer," Proc. IEEE International Symposium on Antennas and Propagation (APSURSI), 1317-1318, June 2016.        Google Scholar

15. Kadry, M., M. El Atrash, and M. A. Abdalla, "Design of an ultrathin compact flexible dual-band antenna for wearable applications," Proc. IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 1949-1950, July 2018.        Google Scholar

16. Jalil, M., M. Rahim, N. Samsuri, N. Murad, N. Othman, and H. Majid, "On-body investigation of dual-band diamond textile antenna for wearable applications at 2.45 GHz and 5.8 GHz," Proc. 7th European Conference on Antennas and Propagation (EuCAP), 414-417, April 2013.        Google Scholar

17. Hamouda, Z., J. L. Wojkiewicz, A. A. Pud, L. Kone, S. Bergheul, and T. Lasri, "Flexible UWB organic antenna for wearable technologies application," IET Microwaves, Antennas & Propagation, Vol. 12, No. 2, 160-166, 2018.
doi:10.1049/iet-map.2017.0189        Google Scholar

18. Du, C. Z., K. J. Li, and S. S. Zhong, "A novel flexible hexagon wideband CPW-fed monopole antenna for UWB applications," Microwave and Optical Technology Letters, Vol. 63, No. 7, 1899-1905, 2021.
doi:10.1002/mop.32832        Google Scholar

19. Mao, C. X., Y. Zhou, Y. Wu, H. Soewardiman, D. H. Werner, and J. S. Jur, "Low-profile strip-loaded textile antenna with enhanced bandwidth and isolation for full-duplex wearable applications," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 9, 6527-6537, 2020.
doi:10.1109/TAP.2020.2989862        Google Scholar

20. Wagih, M., G. S. Hilton, A. S. Weddell, and S. Beeby, "Dual-polarized wearable antenna/rectenna for full-duplex and MIMO Simultaneous Wireless Information and Power Transfer (SWIPT)," IEEE Open Journal of Antennas and Propagation, Vol. 2, 844-857, 2021.
doi:10.1109/OJAP.2021.3098939        Google Scholar

21. Mao, C. X., D. Vital, D. H. Werner, Y. Wu, and S. Bhardwaj, "Dual-polarized embroidered textile armband antenna array with omnidirectional radiation for on-/off-body wearable applications," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 4, 2575-2584, 2020.
doi:10.1109/TAP.2019.2951517        Google Scholar

22. Mallat, N. K. and A. Iqbal, "Substrate integrated waveguide-based simultaneous transmit and receive antenna for full-duplex wearable devices," International Journal of RF and Microwave Computer-aided Engineering, e23188, 2022.        Google Scholar

23. Hossain, A. R., A. A. Mertvyy, N. Tran, and T. Karacolak, "A high gain flexible antenna for full duplex system at 5.8 GHz with defected ground structure," Proc. IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI), 1040-1041, July 2022.        Google Scholar

24. Guha, D., M. Biswas, and Y. M. Antar, "Microstrip patch antenna with defected ground structure for cross polarization suppression," IEEE Antennas and Wireless Propagation Letters, Vol. 4, 455-458, 2005.
doi:10.1109/LAWP.2005.860211        Google Scholar

25. Sung, Y., M. Kim, and Y. S. Kim, "Harmonics reduction with defected ground structure for a microstrip patch antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 2, 111-113, 2003.
doi:10.1109/LAWP.2003.815281        Google Scholar

26. Chiang, K. H. and K. W. Tam, "Microstrip monopole antenna with enhanced bandwidth using defected ground structure," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 532-535, 2008.
doi:10.1109/LAWP.2008.2005592        Google Scholar

27. Chung, Y., S. S. Jeon, D. Ahn, J. I. Choi, and T. Itoh, "High isolation dual-polarized patch antenna using integrated defected ground structure," IEEE Microwave and Wireless Components Letters, Vol. 14, No. 1, 4-6, 2004.
doi:10.1109/LMWC.2003.821501        Google Scholar

28. Kumar, C., M. I. Pasha, and D. Guha, "Defected ground structure integrated microstrip array antenna for improved radiation properties," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 310-312, 2017.
doi:10.1109/LAWP.2016.2574638        Google Scholar

29. Weng, L. H., Y. C. Guo, X. W. Shi, and X. Q. Chen, "An overview on defected ground structure," Progress In Electromagnetics Research B, Vol. 7, 173-189, 2008.
doi:10.2528/PIERB08031401        Google Scholar

30. Doddipalli, S., A. Kothari, and P. Peshwe, "A low profile ultrawide band monopole antenna for wearable applications," International Journal of Antennas and Propagation, Vol. 2017, Art. No. 7362431, 2017.        Google Scholar

31. Yang, H., X. Liu, Y. Fan, and L. Xiong, "Dual-band textile antenna with dual circular polarizations using polarization rotation AMC for off-body communications," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 6, 4189-4199, 2022.
doi:10.1109/TAP.2021.3138504        Google Scholar

32. Almohammed, B., A. Ismail, and A. Sali, "Electro-textile wearable antennas in wireless body area networks: Materials, antenna design, manufacturing techniques, and human body consideration --- A review," Textile Research Journal, Vol. 91, No. 5-6, 646-663, 2021.
doi:10.1177/0040517520932230        Google Scholar

33., IEEE standards for safety levels with respect to human exposure to electric, magnetic, and electromagnetic fields, 0 Hz to 300 GHz, IEEE Std. C95. 1-2019, 2019.
doi:10.1177/0040517520932230        Google Scholar

34. Zu, H. R., B.Wu, Y. H. Zhang, Y. T. Zhao, R. G. Song, and D. P. He, "Circularly polarized wearable antenna with low profile and low specific absorption rate using highly conductive graphene film," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 12, 2354-2358, 2020.
doi:10.1109/LAWP.2020.3033013        Google Scholar

35. Jiang, Z. H., Z. Cui, T. Yue, Y. Zhu, and D. H. Werner, "Compact, highly efficient, and fully flexible circularly polarized antenna enabled by silver nanowires for wireless body-area networks," IEEE Transactions on Biomedical Circuits and Systems, Vol. 11, No. 4, 920-932, 2017.
doi:10.1109/TBCAS.2017.2671841        Google Scholar

36. Samanta, G. and D. Mitra, "Dual-band circular polarized flexible implantable antenna using reactive impedance substrate," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 6, 4218-4223, 2019.
doi:10.1109/TAP.2019.2905978        Google Scholar

37. Hussein, A. H., H. H. Abdullah, M. A. Attia, and A. M. Abada, "S-band compact microstrip full-duplex Tx/Rx patch antenna with high isolation," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 10, 2090-2094, 2019.
doi:10.1109/LAWP.2019.2937769        Google Scholar

38. Wen, D., Y. Hao, M. O. Munoz, H.Wang, and H. Zhou, "A compact and low-profile MIMO antenna using a miniature circular high-impedance surface for wearable applications," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 1, 96-104, 2018.
doi:10.1109/TAP.2017.2773465        Google Scholar

39. Jayant, S., G. Srivastava, and S. Kumar, "Quad-port UWB MIMO footwear antenna for wearable applications," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 9, 7905-7913, 2022.
doi:10.1109/TAP.2022.3177481        Google Scholar

40. Wen, D., Y. Hao, H. Wang, and H. Zhou, "Design of a MIMO antenna with high isolation for smartwatch applications using the theory of characteristic modes," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 3, 1437-1447, 2019.
doi:10.1109/TAP.2018.2884849        Google Scholar