1. Paracha, K. N., S. K. Abdul Rahim, P. J. Soh, and M. Khalily, "Wearable antennas: A review of materials, structures, and innovative features for autonomous communication and sensing," IEEE Access, Vol. 7, 56694-56712, 2019.
doi:10.1109/ACCESS.2019.2909146 Google Scholar
2. Zhao, B., J. Mao, J. Zhao, H. Yang, and Y. Lian, "The role and challenges of body channel communication in wearable flexible electronics," IEEE Trans. Biomed. Circuits Syst., Vol. 14, No. 2, 283-296, 2020.
doi:10.1109/TBCAS.2020.2966285 Google Scholar
3. Ahmed, S., S. T. Qureshi, L. Sydanheimo, L. Ukkonen, and T. Bjorninen, "Comparison of wearable E-textile split ring resonator and slotted patch RFID reader antennas embedded in work gloves," IEEE Journal of Radio Frequency Identication, Vol. 3, No. 4, 259-264, 2019.
doi:10.1109/JRFID.2019.2926194 Google Scholar
4. "FCC report and order for Part 15: Acceptance of ultra wideband (UWB) systems from 3.1-10.6 GHz," FCC, Washington, DC, USA, 2002. Google Scholar
5. Taylor, P. S. and J. C. Batchelor, "Finger-worn UHF far-field RFID tag antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 4, 2513-2517, 2019.
doi:10.1109/LAWP.2019.2941731 Google Scholar
6. Parthiban, P., "Fixed UHF RFID reader antenna design for practical applications: A guide for antenna engineers with examples," IEEE Journal of Radio Frequency Identication, Vol. 3, No. 3, 191-204, 2019.
doi:10.1109/JRFID.2019.2920110 Google Scholar
7. Kim, J., A. S. Campbell, B. E. de Avila, and J. Wang, "Wearable biosensors for healthcare monitoring," Nat. Biotechnol, Vol. 37, No. 4, 389-406, 2019.
doi:10.1038/s41587-019-0045-y Google Scholar
8. Ashyap, A. Y. I., "An overview of electromagnetic band-gap integrated wearable antennas," IEEE Access, Vol. 8, 7641-7658, 2020.
doi:10.1109/ACCESS.2020.2963997 Google Scholar
9. Tajin, M. A. S. and K. R. Dandekar, "Pattern recongurable UHF RFID reader antenna array," IEEE Access, Vol. 8, 187365-187372, 2020.
doi:10.1109/ACCESS.2020.3031296 Google Scholar
10. Arif, A., M. Zubair, M. Ali, M. U. Khan, and M. Q. Mehmood, "Compact, low-profile fractal antenna for wearable on-body WBAN applications," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 5, 981-985, 2019.
doi:10.1109/LAWP.2019.2906829 Google Scholar
11. Alqadami, A. S. M., K. S. Bialkowski, A. T. Mobashsher, and A. M. Abbosh, "Wearable electromagnetic head imaging system using exible wideband antenna array based on polymer technology for brain stroke diagnosis," IEEE Trans. Biomed. Circuits Syst., Vol. 13, No. 1, 124-134, 2019.
doi:10.1109/TBCAS.2018.2878057 Google Scholar
12. El Atrash, M., M. A. Abdalla, and H. M. Elhennawy, "A wearable dual-band low prole high gain low SAR antenna FSS-backed for WBAN applications," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 3, 6378-6388, 2019.
doi:10.1109/TAP.2019.2923058 Google Scholar
13. Le, T. T. and T.-Y. Yun, "Miniaturization of a dual-band wearable antenna for WBAN applications," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 1, 1452-1456, 2020.
doi:10.1109/LAWP.2020.3005658 Google Scholar
14. Zhang, K., G. A. E. Vandenbosch, and S. Yan, "A novel design approach for compact wearable antennas based on metasurfaces," IEEE Transactions on Biomedical Circuits and Systems, Vol. 14, No. 4, 918-927, 2020.
doi:10.1109/TBCAS.2020.3010259 Google Scholar
15. Gao, G., C. Yang, B. Hu, R. Zhang, and S.Wang, "A wearable PIFA with an all-textile metasurface for 5 GHz WBAN applications," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 2, 288-292, 2019.
doi:10.1109/LAWP.2018.2889117 Google Scholar
16. Haydhah, S. A., F. Ferrero, L. Lizzi, M. S. Sharawi, and A. Zerguine, "A multifunctional compact pattern recongurable antenna with four radiation patterns for sub-GHz IoT applications," IEEE Open Journal of Antennas and Propagation, Vol. 2, 613-622, 2021.
doi:10.1109/OJAP.2021.3078236 Google Scholar
17. Wasfy, M. and H. Hammad, "Modelling and design of a large segmented loop antenna with a coplanar parasitic slot loop for NF UHF RFID readers," IEEE Journal of Radio Frequency Identication, Vol. 6, 31-40, 2022.
doi:10.1109/JRFID.2021.3102091 Google Scholar
18. Ahmed, G., et al. "Rigorous analysis and evaluation of specific absorption rate (SAR) for mobile multimedia healthcare," IEEE Access, Vol. 6, 29602-29610, 2018.
doi:10.1109/ACCESS.2018.2839909 Google Scholar
19. Dey, S., M. S. Aren, and N. C. Karmakar, "Design and experimental analysis of a novel compact and flexible super wide band antenna for 5G," IEEE Access, Vol. 9, 46698-46708, 2021.
doi:10.1109/ACCESS.2021.3068082 Google Scholar
20. Sharma, S., M. R. Tripathy, and A. K. Sharma, "Low prole and low SAR flexible wearable patch antenna for WBAN," 8th International Conference on Signal Processing and Integrated Networks (SPIN), 1119-1124, 2021. Google Scholar
21. Can, S. and A. E. Yilmaz, "Reduction of specific absorption rate with artificial magnetic conductors," Int. J. RF Microw. Comput. Aided Eng., Vol. 26, No. 4, 349-354, 2016.
doi:10.1002/mmce.20974 Google Scholar
22. Sharma, S., M. R. Tripathy, and A. K. Sharma, "High gain FSS integrated slotted UHF RFID antenna for WBAN," Int. J. Syst. Assur. Eng. Manag., 2021, https://doi.org/10.1007/s13198-021-01352-z. Google Scholar
23. Sharma, S., M. R. Tripathy, and A. K. Sharma, "Dual-band circularly polarized wearable patch antenna for RFID reader," IEEE International Conference on RFID Technology and Applications (RFID-TA), 195-198, 2021.
doi:10.1109/RFID-TA53372.2021.9617250 Google Scholar
24. Liu, X., Y. Liu, and M. M. Tentzeris, "A novel circularly polarized antenna with coin-shaped patches and a ring-shaped strip for worldwide UHF RFID applications," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 707-710, 2015.
doi:10.1109/LAWP.2014.2378513 Google Scholar
25. Lai, F.-P., J.-F. Yang, and Y.-S. Chen, "Compact dual-band circularly polarized antenna using double cross dipoles for RFID handheld readers," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 1, 1429-1433, 2020.
doi:10.1109/LAWP.2020.3004881 Google Scholar
26. Lorenzo, J., A. Lazaro, R. Villarino, and D. Girbau, "Modulated frequency selective surfaces for wearable RFID and sensor applications," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 3, 4447-4456, 2016.
doi:10.1109/TAP.2016.2596798 Google Scholar
27. Saeed, S. M., C. A. Balanis, C. R. Birtcher, A. C. Durgun, and H. N. Shaman, "Wearable flexible reconfigurable antenna integrated with artificial magnetic conductor," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2396-2399, 2017.
doi:10.1109/LAWP.2017.2720558 Google Scholar
28. Lazaro, A., A. Ramos, D. Girbau, and R. Villarino, "A novel UWB RFID tag using active frequency selective surface,", Vol. 61, No. 3, 1155-1165, Mar. 2013.
doi:10.1109/TAP.2012.2228838 Google Scholar
29. Sharma, S., M. R. Tripathy, and A. K. Sharma, "FSS supported longer read range passive UHF RFID reader antenna," IEEE International Conference on RFID Technology and Applications (RFID-TA), 207-210, 2021.
doi:10.1109/RFID-TA53372.2021.9617417 Google Scholar
30. Pozar, D. M. and D. H. Schaubert, Microstrip Antennas: The Design and Analysis of Microstrip Antennas and Arrays, 4th Edition, John Wiley and Sons, 2012.
31. Munk, B. A., Frequency Selective Surfaces: Theory and Design, Wiley, New York, 2000.
doi:10.1002/0471723770
32. Ziolkowski, R. W., "Design, fabrication, and testing of double negative metamaterials," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 7, 1516-1529, 2003.
doi:10.1109/TAP.2003.813622 Google Scholar
33. Can, S. and A. E. Yilmaz, "Reduction of specific absorption rate with artificial magnetic conductors," Int. J. RF Microw. Comput. Aided Eng., Vol. 26, No. 4, 349-354, 2016.
doi:10.1002/mmce.20974 Google Scholar
34. Fakhte, R. and I. Aryanian, "Compact fabry-perot antenna with wide 3 dB axial ratio bandwidth based on FSS and AMC structures," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 1, 1326-1330, 2020.
doi:10.1109/LAWP.2020.2999745 Google Scholar
35. Sarkar, S. and B. Gupta, "A dual-band circularly polarized antenna with a dual-band AMC reflector for RFID readers," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 5, 796-800, 2020.
doi:10.1109/LAWP.2020.2980325 Google Scholar
36. Ashyap, A. Y. I., et al. "Highly efficient wearable CPW antenna enabled by EBG-FSS structure for medical body area network applications," IEEE Access, Vol. 6, 77529-77541, 2018.
doi:10.1109/ACCESS.2018.2883379 Google Scholar
37. Wang, M., et al. "Investigation of SAR reduction using flexible antenna with metamaterial structure in wireless body area network," IEEE Trans. Antennas Propag., Vol. 66, No. 6, 3076-3086, 2018.
doi:10.1109/TAP.2018.2820733 Google Scholar
38. Lai, F.-P., J.-F. Yang, and Y.-S. Chen, "Compact dual-band circularly polarized antenna using double cross dipoles for RFID handheld readers," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 1, 1429-1433, 2020.
doi:10.1109/LAWP.2020.3004881 Google Scholar
39. Singh, R. K., A. Michel, P. Nepa, A. Salvatore, M. Terraroli, and P. Perego, "Compact and wearable yagi-like textile antennas for near-field UHF-RFID readers," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 3, 1324-1333, 2021.
doi:10.1109/TAP.2020.3030944 Google Scholar
40. Ahmed, S., D. Le, L. Sydanheimo, L. Ukkonen, and T. Bjorninen, "Wearable metasurface-enabled quasi-yagi antenna for UHF RFID reader with end-fire rediation along the forearm," IEEE Access, Vol. 9, 77229-77238, 2021.
doi:10.1109/ACCESS.2021.3078239 Google Scholar