1. Etesami, F., S. Khorshidi, S. Shahcheraghi, and A. Yahaghi, "Improvement of radiation characteristics of balanced antipodal Vivaldi antenna using transformation optics," Progress In Electromagnetics Research M, Vol. 56, 189-196, 2017.
doi:10.2528/PIERM17013102 Google Scholar
2. Moosazadeh, M. and S. Kharkovsky, "Development of the antipodal Vivaldi antenna for detection of cracks inside concrete members," Microwave and Optical Technology Letters, Vol. 57, No. 7, 1573-1578, 2015.
doi:10.1002/mop.29158 Google Scholar
3. Dixit, A. S. and S. Kumar, "A survey of performance enhancement techniques of antipodal Vivaldi antenna," IEEE Access, Vol. 8, 45774-45796, 2020.
doi:10.1109/ACCESS.2020.2977167 Google Scholar
4. Gazit, E., "Improved design of the Vivaldi antenna," IEE Proceedings H (Microwaves, Antennas and Propagation), Vol. 135, No. 2, 89-92, IET Digital Library, 1988.
doi:10.1049/ip-h-2.1988.0020 Google Scholar
5. Nassar, I. T. and T. M. Weller, "A novel method for improving antipodal Vivaldi antenna performance," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 7, 3321-3324, 2015.
doi:10.1109/TAP.2015.2429749 Google Scholar
6. Moosazadeh, M., S. Kharkovsky, J. T. Case, and B. Samali, "Antipodal Vivaldi antenna with improved radiation characteristics for civil engineering applications," IET Microwaves, Antennas & Propagation, Vol. 11, No. 6, 796-803, 2017.
doi:10.1049/iet-map.2016.0720 Google Scholar
7. Hood, A. Z., T. Karacolak, and E. Topsakal, "A small antipodal Vivaldi antenna for ultrawide-band applications," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 656-660, 2008.
doi:10.1109/LAWP.2008.921352 Google Scholar
8. Lee, S., J. Hur, M. B. Heo, S. Kim, H. Choo, and G. Byun, "A suboptimal approach to antenna design problems with kernel regression," IEEE Access, Vol. 7, 17461-17468, 2019.
doi:10.1109/ACCESS.2019.2896658 Google Scholar
9. Bai, J., S. Shi, and D. W. Prather, "Modified compact antipodal Vivaldi antenna for 4-50-GHz UWB application," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 4, 1051-1057, 2011.
doi:10.1109/TMTT.2011.2113970 Google Scholar
10. Gorai, A., A. Karmakar, M. Pal, and R. Ghatak, "A super wideband Chebyshev tapered antipodal Vivaldi antenna," AEU-International Journal of Electronics and Communications, Vol. 69, No. 9, 1328-1333, 2015. Google Scholar
11. Bourqui, J., M. Okoniewski, and E. C. Fear, "Balanced antipodal Vivaldi antenna with dielectric director for near-field microwave imaging," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 7, 2318-2326, 2010.
doi:10.1109/TAP.2010.2048844 Google Scholar
12. Dixit, A. S. and S. Kumar, "A survey of performance enhancement techniques of antipodal Vivaldi antenna," IEEE Access, Vol. 8, 45774-45796, 2020.
doi:10.1109/ACCESS.2020.2977167 Google Scholar
13. Zhu, S., H. Liu, Z. Chen, and P. Wen, "A compact gain-enhanced Vivaldi antenna array with suppressed mutual coupling for 5G mmWave application," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 5, 776-779, 2018.
doi:10.1109/LAWP.2018.2816038 Google Scholar
14. Theofanopoulos, P. C., M. Sakr, and G. C. Trichopoulos, "Multistatic terahertz imaging using the radon transform," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 4, 2700-2709, 2019.
doi:10.1109/TAP.2019.2891461 Google Scholar
15. Mirjahanmardi, S. H., "Microwave near-field imaging and material characterization,", Ph.D. Thesis, UWSpace, 2020, http://hdl.handle.net/10012/15725. Google Scholar