Vol. 127
Latest Volume
All Volumes
PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-12-18
A Directional Wide-Band Antipodal Vivaldi Antenna for Imaging Applications
By
Progress In Electromagnetics Research C, Vol. 127, 227-237, 2022
Abstract
The paper presents a new compact directional antipodal Vivaldi antenna that can be employed in modern imaging applications. To obtain wide-band impedance bandwidth in the proposed antenna, a stair case slot is introduced in both the tapered region along with a triangular ground plane. In addition, by means of introducing a parasitic patch close to the centre of radiators, a more directional radiation characteristic is attained within the operational bandwidth. Based on the simulation results, the antenna designed on FR4 substrate provides a wide impedance bandwidth (S11 < -10 dB) of 6.2 GHz i.e., between (3.8-10 GHz) with a gain between 3.5 to 7.5 dB suitable for variety of imaging applications. The designed single feed antenna is compact, low profile and trimmed to provide a triangular geometry with light weight. To validate the directional radiation performance of the antenna, it is fabricated and integrated with a signal generator and spectrum analyzer to obtain the image of a uniform target object i.e., cylinder using the standard back projection Radon transform algorithm. The proposed setup along with the algorithm are promising for the civil and medical applications on applying to other shapes of objects.
Citation
Amit Birwal, Kamlesh Patel, and Sanjeev Singh, "A Directional Wide-Band Antipodal Vivaldi Antenna for Imaging Applications," Progress In Electromagnetics Research C, Vol. 127, 227-237, 2022.
doi:10.2528/PIERC22102201
References

1. Etesami, F., S. Khorshidi, S. Shahcheraghi, and A. Yahaghi, "Improvement of radiation characteristics of balanced antipodal Vivaldi antenna using transformation optics," Progress In Electromagnetics Research M, Vol. 56, 189-196, 2017.
doi:10.2528/PIERM17013102

2. Moosazadeh, M. and S. Kharkovsky, "Development of the antipodal Vivaldi antenna for detection of cracks inside concrete members," Microwave and Optical Technology Letters, Vol. 57, No. 7, 1573-1578, 2015.
doi:10.1002/mop.29158

3. Dixit, A. S. and S. Kumar, "A survey of performance enhancement techniques of antipodal Vivaldi antenna," IEEE Access, Vol. 8, 45774-45796, 2020.
doi:10.1109/ACCESS.2020.2977167

4. Gazit, E., "Improved design of the Vivaldi antenna," IEE Proceedings H (Microwaves, Antennas and Propagation), Vol. 135, No. 2, 89-92, IET Digital Library, 1988.
doi:10.1049/ip-h-2.1988.0020

5. Nassar, I. T. and T. M. Weller, "A novel method for improving antipodal Vivaldi antenna performance," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 7, 3321-3324, 2015.
doi:10.1109/TAP.2015.2429749

6. Moosazadeh, M., S. Kharkovsky, J. T. Case, and B. Samali, "Antipodal Vivaldi antenna with improved radiation characteristics for civil engineering applications," IET Microwaves, Antennas & Propagation, Vol. 11, No. 6, 796-803, 2017.
doi:10.1049/iet-map.2016.0720

7. Hood, A. Z., T. Karacolak, and E. Topsakal, "A small antipodal Vivaldi antenna for ultrawide-band applications," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 656-660, 2008.
doi:10.1109/LAWP.2008.921352

8. Lee, S., J. Hur, M. B. Heo, S. Kim, H. Choo, and G. Byun, "A suboptimal approach to antenna design problems with kernel regression," IEEE Access, Vol. 7, 17461-17468, 2019.
doi:10.1109/ACCESS.2019.2896658

9. Bai, J., S. Shi, and D. W. Prather, "Modified compact antipodal Vivaldi antenna for 4-50-GHz UWB application," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 4, 1051-1057, 2011.
doi:10.1109/TMTT.2011.2113970

10. Gorai, A., A. Karmakar, M. Pal, and R. Ghatak, "A super wideband Chebyshev tapered antipodal Vivaldi antenna," AEU-International Journal of Electronics and Communications, Vol. 69, No. 9, 1328-1333, 2015.

11. Bourqui, J., M. Okoniewski, and E. C. Fear, "Balanced antipodal Vivaldi antenna with dielectric director for near-field microwave imaging," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 7, 2318-2326, 2010.
doi:10.1109/TAP.2010.2048844

12. Dixit, A. S. and S. Kumar, "A survey of performance enhancement techniques of antipodal Vivaldi antenna," IEEE Access, Vol. 8, 45774-45796, 2020.
doi:10.1109/ACCESS.2020.2977167

13. Zhu, S., H. Liu, Z. Chen, and P. Wen, "A compact gain-enhanced Vivaldi antenna array with suppressed mutual coupling for 5G mmWave application," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 5, 776-779, 2018.
doi:10.1109/LAWP.2018.2816038

14. Theofanopoulos, P. C., M. Sakr, and G. C. Trichopoulos, "Multistatic terahertz imaging using the radon transform," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 4, 2700-2709, 2019.
doi:10.1109/TAP.2019.2891461

15. Mirjahanmardi, S. H., "Microwave near-field imaging and material characterization,", Ph.D. Thesis, UWSpace, 2020, http://hdl.handle.net/10012/15725.