1. Federal Communications Commission, Washington, DC, "FCC report and order on ultra wideband technology,", 2002. Google Scholar
2. Schantz, H., The Art and Science of Ultrawideband Antennas, Artech House, Norwood, 2005.
doi:10.2528/PIERL18080105
3. Yeo, J., "Miniaturized UWB stepped open-slot antenna," Progress In Electromagnetics Research Letters, Vol. 78, 119-127, 2018.
doi:10.1109/TAP.1960.1144889 Google Scholar
4. Eberle, J., C. Levis, and D. McCoy, "The flared slot: A moderately directive flush-mounted broad-band antenna," IRE Trans. Antennas Propag., Vol. 8, No. 5, 461-468, Sep. 1960. Google Scholar
5. Gibson, P. J., "The Vivaldi aerial," Proc. 9th Eu. Microw. Conf., Vol. 1, 101-105, 1979. Google Scholar
6. Abbosh, A., M. Bialkowski, and H. Kan, "Planar tapered slot antennas," Printed Antennas for Wireless Communications, Ch. 6, 161-162, John Wiley & Sons, Hoboken, NJ, 2007.
doi:10.1002/mmce.20673 Google Scholar
7. Zhu, F., S. Gao, A. T. S. Ho, C. H. See, R. A. Abd-Alhameed, J. Li, and J. Xu, "Compact-size linearly tapered slot antenna for portable ultra-wideband imaging systems," Int. J. RF Microwave Comput. --- Aided Eng., Vol. 23, No. 3, 290-299, Aug. 2012. Google Scholar
8. Zhu, F. and S. Gao, "Compact elliptically tapered slot antenna with nonuniform corrugations for ultra-wideband applications," Radioengineering, Vol. 22, No. 1, 276-280, Apr. 2013.
doi:10.2528/PIER14043003 Google Scholar
9. Ma, K., Z. Zhao, J. Wu, S. M. Ellis, and Z. P. Nie, "A printed Vivaldi antenna with improved radiation patterns by using two pairs of eye-shaped slots for UWB applications," Progress In Electromagnetics Research, Vol. 148, 63-71, 2014.
doi:10.1109/ACCESS.2017.2766184 Google Scholar
10. Yang, D., S. Liu, and D. Geng, "A miniaturized ultra-wideband Vivaldi antenna with low cross polarization," IEEE Access, Vol. 5, 23352-23357, 2017.
doi:10.3390/s20215988 Google Scholar
11. Seo, J., J. H. Kim, and J. Oh, "Semicircular patch-embedded Vivaldi antenna for miniaturized UWB radar sensors," Sensors, Vol. 20, 5988, 2020.
doi:10.3390/electronics10010083 Google Scholar
12. Honari, M. M., M. S. Ghaffarian, and R. Mirzavand, "Miniaturized antipodal Vivaldi antenna with improved bandwidth using exponential strip arms," Electronics, Vol. 10, 83, 2021.
doi:10.1016/j.aej.2021.09.055 Google Scholar
13. Saleh, S., W. Ismail, I. S. Z. Abidin, M. H. Jamaluddin, M. H. Bataineh, and A. S. Alzoubi, "Compact UWB Vivaldi tapered slot antenna," Alex. Eng J., Vol. 61, No. 6, 4977-4994, Jun. 2022.
doi:10.1109/TAP.2015.2429749 Google Scholar
14. Nassar, I. T. and T. M. Weller, "A novel method for improving antipodal Vivaldi antenna performance," IEEE Trans. Antennas Propag., Vol. 63, No. 7, 3321-3324, Jul. 2015.
doi:10.1002/mop.31873 Google Scholar
15. Samsuzzaman, M., M. T. Islam, A. A. S. Shovon, R. I. Faruque, and N. Misran, "A 16-modified antipodal Vivaldi antenna array for microwave-based breast tumor imaging applications," Microw. Opt. Technol. Lett., Vol. 61, No. 9, 2110-2118, Jun. 2019. Google Scholar
16. Li, Z., X. Kang, J. Su, Q. Guo, Y. Yang, and J. Wang, "A wideband end-fire conformal Vivaldi antenna array mounted on a dielectric cone," Int. J. Antennas Propag., Vol. 2016, Art. No. 9812642, Aug. 2016.
doi:10.1002/mop.30988 Google Scholar
17. Gao, C., E. Li, Y. Zhang, and G. Guo, "A directivity enhanced structure for the Vivaldi antenna using coupling patches," Microw. Opt. Technol. Lett., Vol. 60, No. 2, 418-424, Jan. 2018.
doi:10.1109/TAP.2010.2048844 Google Scholar
18. Bourqui, J., M. Okoniewski, and E. C. Fear, "Balanced antipodal Vivaldi antenna with dielectric director for near-field microwave imaging," IEEE Trans. Antennas Propag., Vol. 58, No. 7, 2318-2326, Jul. 2010.
doi:10.1049/iet-map.2014.0207 Google Scholar
19. Molaei, A., M. Kaboli, M. S. Abrishamian, and S. A. Mirtaheri, "Dielectric lens balanced antipodal Vivaldi antenna with low cross-polarisation for ultra-wideband applications," IET Microw., Antennas Propag., Vol. 8, No. 14, 1137-1142, Nov. 2014.
doi:10.1109/LAWP.2016.2633536 Google Scholar
20. Moosazadeh, M., S. Kharkovsky, J. T. Case, and B. Samali, "Miniaturized UWB antipodal Vivaldi antenna and its application for detection of void inside concrete specimens," IEEE Antennas Wireless Propag. Lett., Vol. 16, 1317-1320, 2017.
doi:10.1109/LAWP.2015.2457919 Google Scholar
21. Moosazadeh, M. and S. Kharkovsky, "A compact high-gain and front-to-back ratio elliptically tapered antipodal Vivaldi antenna with trapezoid-shaped dielectric lens," IEEE Antennas Wireless Propag. Lett., Vol. 15, 552-555, 2016. Google Scholar
22. Amiri, M., F. Tofigh, A. Ghafoorzadeh-Yazdi, and M. Abolhasan, "Exponential antipodal Vivaldi antenna with exponential dielectric lens," IEEE Antennas Wireless Propag. Lett., Vol. 16, 1792-1795, 2017.
doi:10.1080/09205071.2017.1393350 Google Scholar
23. Huang, D., H. Yang, Y. Wu, F. Zhao, and X. Liu, "A high-gain antipodal Vivaldi antenna with multi-layer planar dielectric lens," Journal of Electromagnetic Waves and Applications, Vol. 32, No. 4, 403-412, Oct. 2017.
doi:10.2528/PIERC17070308 Google Scholar
24. Li, X. X., D. W. Pang, H. L.Wang, Y. M. Zhang, and G. Q. Lv, "Dielectric slabs covered broadband Vivaldi antenna for gain enhancement," Progress In Electromagnetics Research C, Vol. 77, 69-80, 2017.
doi:10.1109/LAWP.2011.2142170 Google Scholar
25. Zhou, B. and T. J. Cui, "Directivity enhancement to Vivaldi antennas using compactly anisotropic zero-index metamaterials," IEEE Antennas Wireless Propag. Lett., Vol. 10, 326-329, 2011.
doi:10.1007/s00339-015-9569-2 Google Scholar
26. Pandey, G. K., H. S. Singh, and M. K. Meshram, "Meander-line-based inhomogeneous anisotropic artificial material for gain enhancement of UWB Vivaldi antenna," Appl. Phys. A, Vol. 122, 134, 2016.
doi:10.1007/s00339-018-2132-1 Google Scholar
27. Boujemaa, M.-A., R. Herzi, F. Choubani, and A. Gharsallah, "UWB antipodal Vivaldi antenna with higher radiation performances using metamaterials," Appl. Phys. A, Vol. 124, No. 10, 714, 1-7, Sep. 2018.
doi:10.1109/ACCESS.2018.2883097 Google Scholar
28. Zhu, S., H. Liu, P. Wen, L. Du, and J. Zhou, "A miniaturized and high gain double-slot Vivaldi antenna using wideband index-near-zero metasurface," IEEE Access, Vol. 6, 72015-72024, 2018.
doi:10.1038/s41598-019-53857-0 Google Scholar
29. Islam, M. T., M. Samsuzzaman, S. Kibria, N. Misran, and M. T. Islam, "Metasurface loaded high gain antenna based microwave imaging using iteratively corrected delay multiply and sum algorithm," Sci. Rep., Vol. 9, 17317, 2019.
doi:10.1109/TAP.2014.2365044 Google Scholar
30. Chen, L., Z. Lei, R. Yang, J. Fan, and X. Shi, "A broadband artificial material for gain enhancement of antipodal tapered slot antenna," IEEE Trans. Antennas Propag., Vol. 63, No. 1, 395-400, Jan. 2015.
doi:10.1002/mmce.21109 Google Scholar
31. Li, X., G. Liu, Y. Zhang, L. Sang, and G. Lv, "A compact multi-layer phase correcting lens to improve directive radiation of Vivaldi antenna," Int. J. RF Microw. Comput. --- Aided Eng., Vol. 27, No. 7, Apr. 2017.
doi:10.1109/LAWP.2017.2754860 Google Scholar
32. Li, X., H. Zhou, Z. Gao, H. Wang, and G. Lv, "Metamaterial slabs covered UWB antipodal Vivaldi antenna," IEEE Antennas Wireless Propag. Lett., Vol. 16, 2943-2946, 2017. Google Scholar
33. Electromagnetic Simulation Solvers, CST Studio Suite, , Available online: https://www.3ds.com/ko/products-services/simulia/products/cst-studio-suite/solvers/ (accessed on 23 November 2022).
doi:10.3390/s19051212 Google Scholar
34. Tseng, V. and C. Y. Chang, "Linear tapered slot antenna for ultra-wideband radar sensor: design consideration and recommendation," Sensors, Vol. 19, No. 5, 1212, 2019. Google Scholar
35. Huang, Y. and K. Boyle, Antennas: From Theory to Practice, John Wiley & Sons, Inc., Hoboken, NJ, 2008.
doi:10.1109/TMTT.2010.2065310
36. Szabό, Z., G. Park, R. Hedge, and E. Li, "A unique extraction of metamaterial parameters based on Kramers-Kronig relationship," IEEE Trans. Microw. Theory Techn., Vol. 58, No. 10, 2646-2653, Oct. 2010.
doi:10.1109/TAP.2019.2934580 Google Scholar
37. Ma, X., M. S. Mirmoosa, and S. A. Tretyakov, "Parallel-plate waveguides formed by penetrable metasurfaces," IEEE Trans. Antennas Propag., Vol. 68, No. 3, 1773, Mar. 2020. Google Scholar