1. Li, M., H.-L. Yang, X.-W. Hou, Y. Tian, and D.-Y. Hou, "Perfect metamaterial absorber with dual bands," Progress In Electromagnetics Research, Vol. 108, 37-49, 2010.
doi:10.2528/PIER10071409 Google Scholar
2. Rahimi, M., F. B. Zarrabi, R. Ahmadian, Z. Mansouri, and A. Keshtkar, "Miniaturization of antenna for wireless application with difference metamaterial structures," Progress In Electromagnetics Research, Vol. 145, 19-29, 2014.
doi:10.2528/PIER13120902 Google Scholar
3. Sabah, C. and S. Uckun, "Multilayer system of Lorentz/Drude type metamaterials with dielectric slabs and its application to electromagnetic fillters," Progress In Electromagnetics Research, Vol. 91, 349-364, 2009.
doi:10.2528/PIER09031306 Google Scholar
4. Si, L.-M. and X. Lv, "CPW-fed multi-band omni-directional planar microstrip antenna using composite metamaterial resonators for wireless communications," Progress In Electromagnetics Research, Vol. 83, 133-146, 2008.
doi:10.2528/PIER08050404 Google Scholar
5. Smith, D. R., "How to build a superlens," Science, Vol. 308, No. 5721, 502-503, Apr. 22, 2005.
doi:10.1126/science.1110900 Google Scholar
6. Amiri, M., M. Abolhasan, N. Shariati, and J. Lipman, "Soil moisture remote sensing using SIW cavity based metamaterial perfect absorber," Scientific Reports, Vol. 11, No. 1, 1-17, 2021.
doi:10.1038/s41598-020-79139-8 Google Scholar
7. Omer, A. E., G. Shaker, S. Safavi-Naeini, H. Kokabi, G. Alquie, F. Deshours, and R. M. Shubair, "Low-cost portable microwave sensor for non-invasive monitoring of blood glucose level: Novel design utilizing a four-cell CSRR hexagonal configuration," Scientific Reports, Vol. 10, No. 1, 1-20, 2020.
doi:10.1038/s41598-020-72114-3 Google Scholar
8. Vafapour, Z., W. Troy, and A. Rashidi, "Colon cancer detection by designing and analytical evaluation of a water-based THz metamaterial perfect absorber," IEEE Sensors Journal, Vol. 21, No. 17, 19307-19313, Jun. 9, 2021.
doi:10.1109/JSEN.2021.3087953 Google Scholar
9. Tiwari, N. K., S. P. Singh, and M. J. Akhtar, "Novel improved sensitivity planar microwave probe for adulteration detection in edible oils," IEEE Microwave and Wireless Components Letters, Vol. 29, No. 2, 164-166, Dec. 28, 2018.
doi:10.1109/LMWC.2018.2886062 Google Scholar
10. Tumkaya, M. A., F. Dincer, M. Karaaslan, and C. Sabah, "Sensitive metamaterial sensor for distinction of authentic and inauthentic fuel samples," Journal of Electronic Materials, Vol. 46, No. 8, 4955-4962, Aug. 2017.
doi:10.1007/s11664-017-5485-x Google Scholar
11. Abdulkarim, Y. I., S. Dalgac, F. O. Alkurt, F. F. Muhammadsharif, H. N. Awl, S. R. Saeed, O. Altintas, C. Li, M. Bakir, M. Karaaslan, and M. Ameen, "Utilization of a triple hexagonal Split Ring Resonator (SRR) based metamaterial sensor for the improved detection of fuel adulteration," Journal of Materials Science: Materials in Electronics, Vol. 32, No. 19, 24258-24272, Oct. 2021.
doi:10.1007/s10854-021-06891-6 Google Scholar
12. Bakir, M., S. Dalgac, M. Karaaslan, F. Karadag, O. Akgol, E. Unal, T. Depci, and C. Sabah, "A comprehensive study on fuel adulteration sensing by using triple ring resonator type metamaterial," Journal of the Electrochemical Society, Vol. 166, No. 12, B1044, Aug. 2, 2019.
doi:10.1149/2.1491912jes Google Scholar
13. Zhang, Y., J. Zhao, J. Cao, and B. Mao, "Microwave metamaterial absorber for non-destructive sensing applications of grain," Sensors, Vol. 18, No. 6, 1912, 2018.
doi:10.3390/s18061912 Google Scholar
14. Benkhaoua, L., M. T. Benhabiles, S. Mouissat, and M. L.Riabi, "Miniaturized quasi-lumped resonator for dielectric characterization of liquid mixtures," IEEE Sensors Journal, Vol. 16, No. 6, 1603-1610, Dec. 1, 2015.
doi:10.1109/JSEN.2015.2504601 Google Scholar
15. Chuma, E. L., Y. Iano, G. Fontgalland, and L. L. Roger, "Microwave sensor for liquid dielectric characterization based on metamaterial complementary split ring resonator," IEEE Sensors Journal, Vol. 18, No. 24, 9978-9983, Oct. 1, 2018.
doi:10.1109/JSEN.2018.2872859 Google Scholar
16. Zhou, H., D. Hu, C. Yang, C. Chen, J. Ji, M. Chen, Y. Chen, Y. Yang, and X. Mu, "Multi-band sensing for dielectric property of chemicals using metamaterial integrated microfluidic sensor," Scientific Reports, Vol. 8, No. 1, 1-11, 2018. Google Scholar
17. Kim, H. K., D. Lee, and S. Lim, "A fluidically tunable metasurface absorber for flexible large-scale wireless ethanol sensor applications," Sensors, Vol. 16, No. 8, 1246, Aug. 2016.
doi:10.3390/s16081246 Google Scholar
18. Yoo, M., H. K. Kim, and S. Lim, "Electromagnetic-based ethanol chemical sensor using metamaterial absorber," Sensors and Actuators B: Chemical, Vol. 222, 173-180, Jan. 1, 2016. Google Scholar
19. Prakash, D. and N. Gupta, "High sensitivity grooved CSRR based sensor for liquid chemical characterization," IEEE Sensors Journal, Aug. 19, 2022. Google Scholar
20. Ekmekci, E., U. Kose, A. Cinar, O. Ertan, and Z. Ekmekci, "The use of metamaterial type double-sided resonator structures in humidity and concentration sensing applications," Sensors and Actuators A: Physical, Vol. 297, 111559, Oct. 1, 2019. Google Scholar
21. Ekmekci, E. and G. Turhan-Sayan, "Multi-functional metamaterial sensor based on a broad-side coupled SRR topology with a multi-layer substrate," Applied Physics A, Vol. 110, No. 1, 189-197, 2013.
doi:10.1007/s00339-012-7113-1 Google Scholar
22. Prakash, D. and N. Gupta, "Applications of metamaterial sensors: Review," International Journal of Microwave and Wireless Technologies, 1-15, 2021. Google Scholar
23. Ballard, Z., C. Brown, A. M. Madni, and A. Ozcan, "Machine learning and computation-enabled intelligent sensor design," Nature Machine Intelligence, Vol. 3, No. 7, 556-565, Jul. 2021.
doi:10.1038/s42256-021-00360-9 Google Scholar
24. Gocen, C. and M. Palandoken, "Machine learning assisted novel microwave sensor design for dielectric parameter characterization of water-ethanol mixture," IEEE Sensors Journal, Vol. 22, No. 3, 2119-2127, Dec. 15, 2021.
doi:10.1109/JSEN.2021.3136092 Google Scholar
25. Patel, S. K., J. Surve, J. Parmar, A. Natesan, and V. Katkar, "Graphene-based metasurface refractive index biosensor for hemoglobin detection: Machine learning assisted optimization," IEEE Transactions on Nano Bioscience, Aug. 26, 2022. Google Scholar
26. Patel, S. K., J. Parmar, and V. Katkar, "Ultra-broadband, wide-angle plus-shape slotted metamaterial solar absorber design with absorption forecasting using machine learning," Scientific Reports, Vol. 12, No. 1, 1-4, Jun. 17, 2022. Google Scholar
27. Prakash, D. and N. Gupta, "Metamaterial inspired soil moisture sensor using machine learning approach for accurate prediction," 2021 3rd International Conference on Advances in Computing, Communication Control and Networking (ICAC3N), 642-646, IEEE, Dec. 17, 2021. Google Scholar
28. Riad, M. M. and A. R. Eldamak, "Coplanar waveguide based sensor using paper superstrate for non-invasive sweat monitoring," IEEE Access, Vol. 8, 177757-177766, Sep. 28, 2020. Google Scholar
29. Ebrahimi, A., W. Withayachumnankul, S. Al-Sarawi, and D. Abbott, "High-sensitivity metamaterial-inspired sensor for microfluidic dielectric characterization," IEEE Sensors Journal, Vol. 14, No. 5, 1345-1351, Dec. 18, 2013.
doi:10.1109/JSEN.2013.2295312 Google Scholar
30. Bao, J. Z., M. L. Swicord, and C. C. Davis, "Microwave dielectric characterization of binary mixtures of water, methanol, and ethanol," The Journal of Chemical Physics, Vol. 104, No. 12, 4441-4450, Mar. 22, 1996.
doi:10.1063/1.471197 Google Scholar
31. Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, and J. Vanderplas, "Scikit-learn: Machine learning in Python," The Journal of Machine Learning Research, Vol. 12, 2825-2830, Nov. 1, 2011. Google Scholar
32. Hastie, T., R. Tibshirani, J. H. Friedman, and J. H. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer, Aug. 2009.
33. Muller, A. C. and S. Guido, Introduction to Machine Learning with Python: A Guide for Data Scientists, O'Reilly Media, Inc., Sep. 26, 2016.
34. Kazemi, N., M. Abdolrazzaghi, and P. Musilek, "Comparative analysis of machine learning techniques for temperature compensation in microwave sensors," IEEE Transactions on Microwave Theory and Techniques, Vol. 69, No. 9, 4223-4236, May 31, 2021.
doi:10.1109/TMTT.2021.3081119 Google Scholar
35. Kazemi, N., N. Gholizadeh, and P. Musilek, "Selective microwave zeroth-order resonator sensor aided by machine learning," Sensors, Vol. 22, No. 14, 5362, Jan. 2022.
doi:10.3390/s22145362 Google Scholar
36. Yang, R., Y. Li, J. Zheng, J. Qiu, J. Song, F. Xu, and B. Qin, "A novel method for carbendazim high-sensitivity detection based on the combination of metamaterial sensor and machine learning," Materials, Vol. 15, No. 17, 6093, Jan. 2022.
doi:10.3390/ma15176093 Google Scholar
37. Wu, W. J., W. S. Zhao, D. W. Wang, B. Yuan, and G. Wang, "Ultrahigh-sensitivity microwave microfluidic sensors based on modified complementary electric-LC and split-ring resonator structures," IEEE Sensors Journal, Vol. 21, No. 17, 18756-18763, Jun. 17, 2021.
doi:10.1109/JSEN.2021.3090086 Google Scholar
38. Badura, M., P. Batog, A. Drzeniecka-Osiadacz, and P. Modzel, "Regression methods in the calibration of low-cost sensors for ambient particulate matter measurements," SN Applied Sciences, Vol. 1, Jun. 2019. Google Scholar
39. Reis, M. S. and P. M. Saraiva, "Integration of data uncertainty in linear regression and process optimization," AIChE Journal, Vol. 51, No. 11, 3007-3019, Nov. 2005.
doi:10.1002/aic.10540 Google Scholar
40. Moon, G., J. R. Choi, C. Lee, Y. Oh, K. H. Kim, and D. Kim, "Machine learning-based design of meta-plasmonic biosensors with negative index 0 metamaterials," Biosensors and Bioelectronics, Vol. 164, 112335, Sep. 15, 2020. Google Scholar