1. Brenner, D. R., H. K. Weir, A. A. Demers, L. F. Ellison, C. Louzado, A. Shaw, D. Turner, R. R. Woods, and L. M. Smith, "Projected estimates of cancer in Canada in 2020," Canadian Medical Association Journal, Vol. 192, No. 9, E199-E205, 2020.
doi:10.1503/cmaj.191292 Google Scholar
2. Canadian Cancer Statistics Advisory Committee "Canadian cancer statistics 2019,", Toronto, ON, Canadian Cancer Society, 2019, Accessed: 2020-04-09. Google Scholar
3. Gøtzsche, P. C. and K. J. Jørgensen, "Screening for breast cancer with mammography," Cochrane Database of Systematic Reviews, Vol. 22, No. 1469-493X (Electronic), CD001877, 2013. Google Scholar
4. Bourqui, J., E. C. Fear, and S. Member, "System for bulk dielectric permittivity estimation of breast tissues at microwave frequencies," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 9, 3001-3009, 2016.
doi:10.1109/TMTT.2016.2586486 Google Scholar
5. Kelly, K. M., J. Dean, W. S. Comulada, and S. J. Lee, "Breast cancer detection using automated whole breast ultrasound and mammography in radiographically dense breasts," European Radiology, Vol. 20, No. 3, 734-742, 2010.
doi:10.1007/s00330-009-1588-y Google Scholar
6. Lalitha, K. and J. Manjula, "Design of UWB antipodal vivaldi antenna with parasitic patch for microwave head imaging system," 2022 International Conference on Computing, Communication, Security and Intelligent Systems (IC3SIS), 1-6, 2022, doi: 10.1109/IC3SIS54991.2022.9885397. Google Scholar
7. Fouda, A. and F. L. Teixeira, "Ultra-wideband microwave imaging of breast cancer tumours via Bayesian inverse scattering," Journal of Applied Physics, Vol. 115, No. 6, 1-8, 2014.
doi:10.1063/1.4865327 Google Scholar
8. Srinivas, K., G. R. Rao, and A. Govardhan, "Rough-fuzzy classifier: A system to predict the heart disease by blending two different set theories," Arab J. Sci. Eng., Vol. 39, 2857-2868, 2014, https://doi.org/10.1007/s13369-013-0934-1.
doi:10.1007/s13369-013-0934-1 Google Scholar
9. Edwards, K., J. LoVetri, C. Gilmore, and I. Jeffrey, "Machine-learning-enabled recovery of prior information from experimental breast microwave imaging data," Progress In Electromagnetics Research, Vol. 175, 1-11, 2022, doi:10.2528/PIER22051601.
doi:10.2528/PIER22051601 Google Scholar
10. Lai, J. C. Y., C. B. Soh, E. Gunawan, and K. S. Low, "Homogeneous and heterogeneous breast phantoms for ultra-wideband microwave imaging applications," Progress In Electromagnetics Research, Vol. 100, 397-415, 2010.
doi:10.2528/PIER09121103 Google Scholar
11. Selvaraj, V., J. B. J. J. Sheela, R. Krishnan, L. Kandasamy, and S. Devarajulu, "Detection of depth of the tumor in microwave imaging using ground penetrating radar algorithm," Progress In Electromagnetics Research M, Vol. 96, 191-202, 2020, doi:10.2528/PIERM20062201.
doi:10.2528/PIERM20062201 Google Scholar
12. Lalitha, K. and J. Manjula, "Novel method of characterization of dispersive properties of heterogeneous head tissue using microwave sensing and machine learning algorithms," Advanced Electromagnetics, Vol. 11, No. 3, 84-92, Oct. 2022, doi:10.7716/aem. v11i3.1821.
doi:10.7716/aem.v11i3.1821 Google Scholar
13. Khoshdel, V., M. Asefi, A. Ashraf, and J. LoVetri, "Full 3D microwave breast imaging using a deep-learning technique," J. Imag., Vol. 6, No. 8, 80, Aug. 2020.
doi:10.3390/jimaging6080080 Google Scholar
14. Redmon, J., S. Divvala, R. Girshick, and A. Farhadi, "You only look once: Unified, real-time object detection," Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 779-788, Jun. 2016. Google Scholar