Vol. 128
Latest Volume
All Volumes
PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-12-31
Design and Analysis of a Novel U-PM Vernier Machine with HTS Bulks
By
Progress In Electromagnetics Research C, Vol. 128, 97-111, 2023
Abstract
In order to improve the electromagnetic performance of permanent magnet vernier machines (PMVMs) at a high pole ratio, a novel U-type permanent magnet (U-PM) vernier machine with high-temperature superconductor (HTS) bulks is proposed. HTS bulks are introduced between the stator modulating teeth, and alternating flux bridges and U-PMs are added in the rotor yoke. The structure can reduce the magnetic flux leakage, provide a magnetic circuit for the low pole pair working magnetic field, weaken the magnetic barrier effect, and improve the torque density of the machine. The parameterized model of the proposed machine with 23 pole pairs of the rotor and 4 pole pairs of the stator is established by the finite element software. In addition, some key parameters of the proposed machine are layered by parameter sensitivity analysis, and then the machine is optimized by genetic algorithm. Compared with the conventional machine, the proposed machine increases the average electromagnetic torque by 69%, reduces the torque ripple to 1.7%, increases the power factor to 0.73, and increases the efficiency to 85.3%.
Citation
Zhangtao Kui, Libing Jing, Zeyu Min, and Kun Yang, "Design and Analysis of a Novel U-PM Vernier Machine with HTS Bulks," Progress In Electromagnetics Research C, Vol. 128, 97-111, 2023.
doi:10.2528/PIERC22110709
References

1. Li, X., X. Wang, and Y. Wang, "Design and analysis of a new HTS linear flux-controllable doubly salient machine," IEEE Trans. Appl. Supercond., Vol. 29, No. 5, 1-5, Aug. 201.

2. Li, W., T. W. Ching, K. T. Chau, and C. H. T. Lee, "A superconducting vernier motor for electric ship propulsion," IEEE Trans. Appl. Supercond., Vol. 28, No. 3, 1-6, Apr. 2018.

3. Köster, R. and A. Binder, "Multi-objective optimization of a direct-drive wind turbine generator with HTS excitation winding," IEEE Trans. Appl. Supercond, Vol. 32, No. 4, 1-8, Jun. 2022.
doi:10.1109/TASC.2022.3143088

4. Li, X., S. Liu, and Y. Wang, "Design and analysis of a stator HTS field-modulated machine for direct-drive applications," IEEE Trans. Appl. Supercond., Vol. 27, No. 4, 1-5, Jun. 2017.
doi:10.1109/TASC.2017.2684059

5. Wu, D., Z. Xiang, X. Zhu, L. Quan, M. Jiang, and Y. Liu, "Optimization design of power factor for an in-wheel vernier PM machine from the perspective of air-gap harmonic modulation," IEEE Trans. Ind. Electron., Vol. 68, No. 10, 9265-9276, Oct. 2021.
doi:10.1109/TIE.2020.3028823

6. Xie, K., D. Li, R. Qu, and Y. Gao, "A novel permanent magnet vernier machine with Halbach array magnets in stator slot opening," IEEE Trans. Magn., Vol. 53, No. 6, 1-5, Jun. 2017.
doi:10.1109/TMAG.2017.2658634

7. Xu, L., W. Zhao, G. Liu, and C. Song, "Design optimization of a Spoke-type permanent-magnet vernier machine for torque density and power factor improvement," IEEE Trans. Veh. Technol., Vol. 68, No. 4, 3446-3456, Apr. 2019.
doi:10.1109/TVT.2019.2902729

8. Zhang, Y., D. Li, P. Yan, X. Ren, R. Qu, and J. Ma, "A high torque density claw-pole permanent-magnets vernier machine," IEEE J. Emerg. Sel. Top. Power Electron., Vol. 10, No. 2, 1756-1765, Apr. 2022.
doi:10.1109/JESTPE.2021.3065997

9. Ren, X., D. Li, R. Qu, Z. Yu, and Y. Gao, "Investigation of spoke array permanent magnet vernier machine with alternate flux bridges," IEEE Trans. Energy Convers., Vol. 33, No. 4, 2112-2121, Dec. 2018.
doi:10.1109/TEC.2018.2846259

10. Baloch, N., S. Khaliq, and B.-I. Kwon, "A high force density HTS tubular vernier machine," IEEE Trans. Magn., Vol. 53, No. 11, 1-5, Nov. 2017.

11. Ardestani, M., N. Arish, and H. Yaghobi, "A new HTS dual stator linear permanent magnet vernier machine with Halbach array for wave energy conversion," Phys. C Supercond., Vol. 569, Feb. 2020.

12. Jing, L., W. Tang, W. Liu, Y. Rao, C. Tan, and R. Qu, "A double-stator single-rotor magnetic field modulated motor with HTS bulks," IEEE Trans. Appl. Supercond., Vol. 32, No. 6, 1-5, Sep. 2022.

13. Li, L., G. Zhu, X. Liu, H. Chen, W. Jiang, and M. Xue, "Design and optimization of a novel HTS flux-modulated linear motor using Halbach permanent magnet arrays," IEEE Trans. Appl. Supercond., Vol. 31, No. 8, 1-4, Nov. 2021.

14. Guo, Y., J. Si, C. Gao, H. Feng, and C. Gan, "Improved Fuzzy-Based Taguchi Method for Multi-Objective Optimization of Direct-Drive Permanent Magnet Synchronous Motors," IEEE Trans. Magn., Vol. 55, No. 6, 1-4, Jun. 2019.
doi:10.1109/TMAG.2019.2897867

15. Zhao, W., A. Ma, J. Ji, X. Chen, and T. Yao, "Multiobjective optimization of a double-side linear vernier PM motor using response surface method and differential evolution," IEEE Trans. Ind. Electron., Vol. 67, No. 1, 80-90, Jan. 2020.
doi:10.1109/TIE.2019.2893848

16. Jia, S., K. Yan, D. Liang, R. Qu, J. Liu, and J. He, "A novel DC-biased current dual pm vernier machine," IEEE Trans. Ind. Appl., Vol. 57, No. 5, 4595-4605, Sept.-Oct. 2021.
doi:10.1109/TIA.2021.3084544

17. Arish, N., F. Marignetti, and M. Yazdani-Asrami, "Comparative study of a new structure of HTS-bulk axial flux-switching machine," Phys. C Supercond., Vol. 584, 2021.

18. Xu, L., W. Wu, W. Zhao, G. Liu, and S. Niu, "Robust design and optimization for a permanent magnet vernier machine with hybrid stator," IEEE Trans. Energy Convers., Vol. 35, No. 4, 2086-2094, Dec. 2020.
doi:10.1109/TEC.2020.3011925