1. Li, X., X. Wang, and Y. Wang, "Design and analysis of a new HTS linear flux-controllable doubly salient machine," IEEE Trans. Appl. Supercond., Vol. 29, No. 5, 1-5, Aug. 201. Google Scholar
2. Li, W., T. W. Ching, K. T. Chau, and C. H. T. Lee, "A superconducting vernier motor for electric ship propulsion," IEEE Trans. Appl. Supercond., Vol. 28, No. 3, 1-6, Apr. 2018. Google Scholar
3. Köster, R. and A. Binder, "Multi-objective optimization of a direct-drive wind turbine generator with HTS excitation winding," IEEE Trans. Appl. Supercond, Vol. 32, No. 4, 1-8, Jun. 2022.
doi:10.1109/TASC.2022.3143088 Google Scholar
4. Li, X., S. Liu, and Y. Wang, "Design and analysis of a stator HTS field-modulated machine for direct-drive applications," IEEE Trans. Appl. Supercond., Vol. 27, No. 4, 1-5, Jun. 2017.
doi:10.1109/TASC.2017.2684059 Google Scholar
5. Wu, D., Z. Xiang, X. Zhu, L. Quan, M. Jiang, and Y. Liu, "Optimization design of power factor for an in-wheel vernier PM machine from the perspective of air-gap harmonic modulation," IEEE Trans. Ind. Electron., Vol. 68, No. 10, 9265-9276, Oct. 2021.
doi:10.1109/TIE.2020.3028823 Google Scholar
6. Xie, K., D. Li, R. Qu, and Y. Gao, "A novel permanent magnet vernier machine with Halbach array magnets in stator slot opening," IEEE Trans. Magn., Vol. 53, No. 6, 1-5, Jun. 2017.
doi:10.1109/TMAG.2017.2658634 Google Scholar
7. Xu, L., W. Zhao, G. Liu, and C. Song, "Design optimization of a Spoke-type permanent-magnet vernier machine for torque density and power factor improvement," IEEE Trans. Veh. Technol., Vol. 68, No. 4, 3446-3456, Apr. 2019.
doi:10.1109/TVT.2019.2902729 Google Scholar
8. Zhang, Y., D. Li, P. Yan, X. Ren, R. Qu, and J. Ma, "A high torque density claw-pole permanent-magnets vernier machine," IEEE J. Emerg. Sel. Top. Power Electron., Vol. 10, No. 2, 1756-1765, Apr. 2022.
doi:10.1109/JESTPE.2021.3065997 Google Scholar
9. Ren, X., D. Li, R. Qu, Z. Yu, and Y. Gao, "Investigation of spoke array permanent magnet vernier machine with alternate flux bridges," IEEE Trans. Energy Convers., Vol. 33, No. 4, 2112-2121, Dec. 2018.
doi:10.1109/TEC.2018.2846259 Google Scholar
10. Baloch, N., S. Khaliq, and B.-I. Kwon, "A high force density HTS tubular vernier machine," IEEE Trans. Magn., Vol. 53, No. 11, 1-5, Nov. 2017. Google Scholar
11. Ardestani, M., N. Arish, and H. Yaghobi, "A new HTS dual stator linear permanent magnet vernier machine with Halbach array for wave energy conversion," Phys. C Supercond., Vol. 569, Feb. 2020. Google Scholar
12. Jing, L., W. Tang, W. Liu, Y. Rao, C. Tan, and R. Qu, "A double-stator single-rotor magnetic field modulated motor with HTS bulks," IEEE Trans. Appl. Supercond., Vol. 32, No. 6, 1-5, Sep. 2022. Google Scholar
13. Li, L., G. Zhu, X. Liu, H. Chen, W. Jiang, and M. Xue, "Design and optimization of a novel HTS flux-modulated linear motor using Halbach permanent magnet arrays," IEEE Trans. Appl. Supercond., Vol. 31, No. 8, 1-4, Nov. 2021. Google Scholar
14. Guo, Y., J. Si, C. Gao, H. Feng, and C. Gan, "Improved Fuzzy-Based Taguchi Method for Multi-Objective Optimization of Direct-Drive Permanent Magnet Synchronous Motors," IEEE Trans. Magn., Vol. 55, No. 6, 1-4, Jun. 2019.
doi:10.1109/TMAG.2019.2897867 Google Scholar
15. Zhao, W., A. Ma, J. Ji, X. Chen, and T. Yao, "Multiobjective optimization of a double-side linear vernier PM motor using response surface method and differential evolution," IEEE Trans. Ind. Electron., Vol. 67, No. 1, 80-90, Jan. 2020.
doi:10.1109/TIE.2019.2893848 Google Scholar
16. Jia, S., K. Yan, D. Liang, R. Qu, J. Liu, and J. He, "A novel DC-biased current dual pm vernier machine," IEEE Trans. Ind. Appl., Vol. 57, No. 5, 4595-4605, Sept.-Oct. 2021.
doi:10.1109/TIA.2021.3084544 Google Scholar
17. Arish, N., F. Marignetti, and M. Yazdani-Asrami, "Comparative study of a new structure of HTS-bulk axial flux-switching machine," Phys. C Supercond., Vol. 584, 2021. Google Scholar
18. Xu, L., W. Wu, W. Zhao, G. Liu, and S. Niu, "Robust design and optimization for a permanent magnet vernier machine with hybrid stator," IEEE Trans. Energy Convers., Vol. 35, No. 4, 2086-2094, Dec. 2020.
doi:10.1109/TEC.2020.3011925 Google Scholar