1. Sharma, A. K., S. Yadav, S. N. Dandu, V. Kumar, J. Sengupta, Sanjay B. Dhok, and S. Kumar, "Magnetic induction-based non-conventional media communications: A review," IEEE Sensors Journal, Vol. 17, No. 4, 926-940, 2016. Google Scholar
2. Sandeep, D. N. and V. Kumar, "Review on clustering, coverage and connectivity in underwater wireless sensor networks: A communication techniques perspective," IEEE Access, Vol. 5, 11176-11199, 2017.
doi:10.1109/ACCESS.2017.2713640 Google Scholar
3. Sun, Z., P. Wang, M. C. Vuran, M. A. Al-Rodhaan, A. M. Al-Dhelaan, and I. F. Akyildiz, "Misepipe: Magnetic induction-based wireless sensor networks for underground pipeline monitoring," Ad Hoc Networks, Vol. 9, No. 3, 218-227, 2011.
doi:10.1016/j.adhoc.2010.10.006 Google Scholar
4. Sun, Z., P. Wang, M. C. Vuran, M. A. Al-Rodhaan, A. M. Al-Dhelaan, and I. F. Akyildiz, "Bordersense: Border patrol through advanced wireless sensor networks," Ad Hoc Networks, Vol. 9, No. 3, 468-477, 2011.
doi:10.1016/j.adhoc.2010.09.008 Google Scholar
5. Sun, Z. and I. F. Akyildiz, "Channel modeling and analysis for wireless networks in underground mines and road tunnels," IEEE Transactions on Communications, Vol. 58, No. 6, 1758-1768, 2010.
doi:10.1109/TCOMM.2010.06.080353 Google Scholar
6. Kumar, V., R. Bhusari, S. B. Dhok, A. Prakash, R. Tripathi, and S. Tiwari, "Design of magnetic induction based energy-efficient wsns for nonconventional media using multilayer transmitter-enabled novel energy model," IEEE Systems Journal, Vol. 10, No. 2, 1285-1296, 2018.
doi:10.1109/JSYST.2018.2852487 Google Scholar
7. Tambe, S., V. Kumar, and R. Bhusari, "Magnetic induction based cluster optimization in non-conventional WSNs: A cross layer approach," AEU-International Journal of Electronics and Communications, Vol. 93, 53-62, 2018. Google Scholar
8. Sun, Z. and I. F. Akyildiz, "Magnetic induction communications for wireless underground sensor networks," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 7, 2426-2435, 2010.
doi:10.1109/TAP.2010.2048858 Google Scholar
9. Shamonina, E., V. A. Kalinin, K. H. Ringhofer, and L. Solymar, "Magnetoinductive waveguide," Electronics Letters, Vol. 38, No. 8, 371-373, 2002.
doi:10.1049/el:20020258 Google Scholar
10. Dandu, S. N., V. Kumar, J. Sengupta, and N. D. Bokde, "Performance analysis of multilayer coil based mi waveguide communication system," Computers, Materials Continua, Vol. 72, 5287-5300, 2022.
doi:10.32604/cmc.2022.026390 Google Scholar
11. Kisseleff, S., I. F. Akyildiz, and W. H. Gerstacker, "Throughput of the magnetic induction based wireless underground sensor networks: Key optimization techniques," IEEE Transactions on Communications, Vol. 62, No. 12, 4426-4439, 2014.
doi:10.1109/TCOMM.2014.2367030 Google Scholar
12. Kisseleff, S., W. Gerstacker, R. Schober, Z. Sun, and I. F. Akyildiz, "Channel capacity of magnetic induction based wireless underground sensor networks under practical constraints," 2013 IEEE Wireless Communications and Networking Conference (WCNC), 2603-2608, 2013.
doi:10.1109/WCNC.2013.6554972 Google Scholar
13. Sun, Z. and I. F. Akyildiz, "On capacity of magnetic induction-based wireless underground sensor networks," 2012 Proceedings IEEE INFOCOM, 370-378, 2012.
doi:10.1109/INFCOM.2012.6195774 Google Scholar
14. Sun, Z., I. F. Akyildiz, S. Kisseleff, and W. Gerstacker, "Increasing the capacity of magnetic induction communications in RF-challenged environments," IEEE Transactions on Communications, Vol. 61, No. 9, 3943-3952, 2013.
doi:10.1109/TCOMM.2013.071813.120600 Google Scholar
15. Etemadrezaei, M., "High quality factor resonators for inductive power transfer systems,", North Carolina State University, 2015. Google Scholar
16. Kim, J., B. Kim, J. Kang, and K. Kim, "A novel method for estimating multilayer coil inductance," IEEE Magnetics Letters, Vol. 8, 1-4, 2017. Google Scholar
17. Kim, J., K. Kim, B. Kim, and J. Kang, "Experimental validation of multi-layer coil inductance estimation method," 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 1303-1304, 2017.
doi:10.1109/APUSNCURSINRSM.2017.8072694 Google Scholar
18. Massarini, A., M. K. Kazimierczuk, and G. Grandi, "Lumped parameter models for single- and multiple-layer inductors," PESC Record. 27th Annual IEEE Power Electronics Specialists Conference, Vol. 1, 295-301, 1996.
doi:10.1109/PESC.1996.548595 Google Scholar
19. Wojda, R. P., "Winding resistance and winding power loss of high-frequency power inductors,", 2012. Google Scholar
20. Kaymak, M., Z. Shen, and R. W. De Doncker, "Comparison of analytical methods for calculating the ac resistance and leakage inductance of medium-frequency transformers," 2016 IEEE 17th Workshop on Control and Modeling for Power Electronics (COMPEL), 1-8, 2016. Google Scholar
21. Lotfi, A. W., P. M. Gradzki, and F. C. Lee, "Proximity effects in coils for high frequency power applications," IEEE Transactions on Magnetics, Vol. 28, No. 5, 2169-2171, 1992.
doi:10.1109/20.179432 Google Scholar
22. Pantic, Z. and S. Lukic, "Computationally-efficient, generalized expressions for the proximity-effect in multi-layer, multi-turn tubular coils for wireless power transfer systems," IEEE Transactions on Magnetics, Vol. 49, No. 11, 5404-5416, 2013.
doi:10.1109/TMAG.2013.2264486 Google Scholar
23. Alabakhshizadeh, A. and O.-M. Midtgxard, "Optimum core dimension for minimizing proximity effect losses of an AC inductor for a galvanically isolated pv inverter," 2012 38th IEEE Photovoltaic Specialists Conference, 001373-001377, 2012.
doi:10.1109/PVSC.2012.6317855 Google Scholar
24. Brennan, T., "Proximity-effect loss calculations for a discontinuous-mode PFC inductor utilising a multifilar winding construction," IEE Proceedings-Electric Power Applications, Vol. 152, No. 5, 1101-1105, 2005.
doi:10.1049/ip-epa:20045267 Google Scholar