1. Novotny, L., "Optical antennas: A new technology that can enhance light-matter interactions," Front. Eng., Vol. 39, No. 4, 100-120, 2012, doi: 10.1364/AOP.1.000438. Google Scholar
2. Abadal, S., E. Alarcón, A. Cabellos-Aparicio, M. Lemme, and M. Nemirovsky, "Graphene-enabled wireless communication for massive multicore architectures," IEEE Commun. Mag., Vol. 51, No. 11, 137-143, 2013, doi: 10.1109/MCOM.2013.6658665.
doi:10.1109/MCOM.2013.6658665 Google Scholar
3. Pohl, D., "Near-field optics seen as an antenna problem in near-field optic," World Sci., 9-21, 1999. Google Scholar
4. Mühlschlegel, P., H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Applied physics: Resonant optical antennas," Science, Vol. 308, No. 5728, 1607-1609, 2005, doi: 10.1126/science.1111886.
doi:10.1126/science.1111886 Google Scholar
5. Schuck, P. J., D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett., Vol. 94, No. 1, 14-17, 2005, doi: 10.1103/PhysRevLett.94.017402.
doi:10.1103/PhysRevLett.94.017402 Google Scholar
6. Huang, J.-S., T. Feichtner, P. Biagioni, and B. Hecht, "Impedance matching and emission properties of optical antennas in a nanophotonic circuit," Nano Lett., Vol. 9, No. 5, 1897-1902, 2008, doi: 10.1021/nl803902t.
doi:10.1021/nl803902t Google Scholar
7. Kinzel, E. C. and X. Xu, "High efficiency excitation of plasmonic waveguides with vertically integrated resonant bowtie apertures," Opt. Express, Vol. 17, No. 10, 8036-45, 2009, doi: 10.1364/oe.17.008036.
doi:10.1364/OE.17.008036 Google Scholar
8. Wen, J., S. Romanov, and U. Peschel, "Excitation of plasmonic gap waveguides by nanoantennas," Opt. Express, Vol. 17, No. 8, 5925-32, 2009, doi: 10.1364/oe.17.005925.
doi:10.1364/OE.17.005925 Google Scholar
9. Sethi, W. T., H. Vettikalladi, H. Fathallah, and M. Himdi, "Nantenna for standard 1550 nm optical communication systems," Int. J. Antennas Propag., Vol. 2016, 1-9, 2016, doi: 10.1155/2016/5429510.
doi:10.1155/2016/5429510 Google Scholar
11. Novotny, L. and N. Van Hulst, "Antennas for light," Nat. Photonics, Vol. 5, No. 2, 83-90, 2011, doi: 10.1038/nphoton.2010.237.
doi:10.1038/nphoton.2010.237 Google Scholar
12. Ulukus, S., et al. "Energy harvesting wireless communications: A review of recent advances," IEEE J. Sel. Areas Commun., Vol. 33, No. 3, 360-381, 2015, doi: 10.1109/JSAC.2015.2391531.
doi:10.1109/JSAC.2015.2391531 Google Scholar
13. Citroni, R., F. Di Paolo, and P. Livreri, "Evaluation of an optical energy harvester for SHM application," AEU - Int. J. Electron. Commun., Vol. 111, 152918, 2019, doi: 10.1016/j.aeue.2019.152918.
doi:10.1016/j.aeue.2019.152918 Google Scholar
14. Walther, M., D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. A. Hegmann, "Terahertz conductivity of thin gold films at the metal-insulator percolation transition," Phys. Rev. B - Condens. Matter Mater. Phys., Vol. 76, No. 12, 1-9, 2007, doi: 10.1103/PhysRevB.76.125408.
doi:10.1103/PhysRevB.76.125408 Google Scholar
15. Mongia, R. K. and P. Bhartia, "Dielectric resonator antennas - A review and general design relations for resonant frequency and bandwidth," Int. J. Microw. Millimeter - Wave Comput. Eng., Vol. 4, No. 3, 230-247, 1994, doi: 10.1002/mmce.4570040304.
doi:10.1002/mmce.4570040304 Google Scholar
16. Luk, K. M. and K.-W. Leung, Dielectric Resonator Antennas, Research Studies Press, 2003.
17. Kajfez, D., A. Elsherbeni, and A. Mokaddem, "Higher order modes in dielectric resonators," IEEE AP-S Antennas Propagat. Symposium, 306-309, 1996. Google Scholar
18. Kajfez, D., A. W. Glisson, and J. James, "Computed modal field distributions for isolated dielectric resonators," IEEE Trans. Microw., Vol. 32, No. 12, 1609-1616, 1984.
doi:10.1109/TMTT.1984.1132900 Google Scholar
19. Bolivar, P. H., et al. "Measurement of the dielectric constant and loss tangent of high dielectric-constant materials at terahertz frequencies," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 41, 1062-1066, 2003, doi: 10.1109/TMTT.2003.809693.
doi:10.1109/TMTT.2003.809693 Google Scholar
20. Yi, H., S. W. Qu, and C. H. Chan, "Wideband dielectric resonator terahertz reflectarray," ICCEM 2015 - 2015 IEEE International Conference on Computational Electromagnetics, 273-274, 2015, doi: 10.1109/COMPEM.2015.7052631.
doi:10.1109/COMPEM.2015.7052631 Google Scholar
21. Varshney, G., S. Gotra, J. Kaur, V. S. Pandey, and R. S. Yaduvanshi, "Obtaining the circular polarization in a nano-dielectric resonator antenna for photonics applications," Semicond. Sci. Technol., Vol. 34, No. 7, 07LT01, 2019, doi: 10.1088/1361-6641/ab1fd1.
doi:10.1088/1361-6641/ab1fd1 Google Scholar
22. Sidiropoulos, T. P. H., M. P. Nielsen, T. R. Roschuk, A. V. Zayats, S. A. Maier, and R. F. Oulton, "Compact optical antenna coupler for silicon photonics characterized by third-harmonic generation," ACS Photonics, Vol. 1, No. 10, 912-916, 2014, doi: 10.1021/ph5002796.
doi:10.1021/ph5002796 Google Scholar
23. Maram, R., S. Kaushal, J. Azaña, and L. R. Chen, "Recent trends and advances of silicon-based integrated microwave photonics,", Vol. 6, No. 1, 2019. Google Scholar
24. Toh, B. Y., R. Cahill, and V. F. Fusco, "Understanding and measuring circular polarization," IEEE Trans. Educ., Vol. 46, No. 3, 313-318, 2003, doi: 10.1109/TE.2003.813519.
doi:10.1109/TE.2003.813519 Google Scholar
25. Valagiannopoulos, C. A., M. Mattheakis, S. N. Shirodkar, and E. Kaxiras, "Manipulating polarized light with a planar slab of black phosphorus," J. Phys. Commun., Vol. 1, No. 4, 2017, doi: 10.1088/2399-6528/aa90c8.
doi:10.1088/2399-6528/aa90c8 Google Scholar
26. Sarsen, A. and C. Valagiannopoulos, "Robust polarization twist by pairs of multilayers with tilted optical axes," Phys. Rev. B, Vol. 99, No. 11, 1-10, 2019, doi: 10.1103/PhysRevB.99.115304.
doi:10.1103/PhysRevB.99.115304 Google Scholar
27. Perhirin, S. and Y. Auffret, "Circularly polarized nanoring antenna for uniform overheating applications," Microw. Opt. Technol. Lett., Vol. 55, No. 11, 2562-2568, 2013, doi: 10.1002/mop.
doi:10.1002/mop.27916 Google Scholar
28. Gotra, S., G. Varshney, R. S. Yaduvanshi, and V. S. Pandey, "Dual-band circular polarisation generation technique with the miniaturisation of a rectangular dielectric resonator antenna," IET Microwaves, Antennas Propag., Vol. 13, No. 10, 8-14, 2019, doi: 10.1049/iet-map.2019.0030.
doi:10.1049/iet-map.2019.0030 Google Scholar
29. Sharawi, M. S., "Current misuses and future prospects for printed multiple-input, multiple-output antenna systems," IEEE Antennas Propag. Mag., Vol. 59, No. 2, 162-170, 2017, doi: 10.1109/MAP.2017.2658346.
doi:10.1109/MAP.2017.2658346 Google Scholar
30. Takase, D. and T. Ohtsuki, "Optical wireless MIMO communications (OMIMO)," GLOBECOM - IEEE Glob. Telecommun. Conf., Vol. 2, No. 5, 928-932, 2004, doi: 10.1109/glocom.2004.1378096.
doi:10.1109/GLOCOM.2004.1378096 Google Scholar
31. Chen, Y., B. Weng, and J. Liu, "A novel photonic-based MIMO radar architecture with all channels sharing a single transceiver," IEEE Access, Vol. 7, 165093-165102, 2019, doi: 10.1109/ACCESS.2019.2953105.
doi:10.1109/ACCESS.2019.2953105 Google Scholar
32. Rui, G., R. L. Nelson, and Q. Zhan, "Circularly polarized unidirectional emission via a coupled plasmonic spiral antenna," Opt. Lett., Vol. 36, No. 23, 4533, 2011, doi: 10.1364/ol.36.004533.
doi:10.1364/OL.36.004533 Google Scholar
33. Ding, G., C. Clavero, D. Schweigert, and M. Le, "Thickness and microstructure effects in the optical and electrical properties of silver thin films," AIP Adv., Vol. 5, No. 11, 117234-11, 2015, doi: 10.1063/1.4936637.
doi:10.1063/1.4936637 Google Scholar
34. Headland, D., et al. "Terahertz magnetic mirror realized with dielectric resonator antennas," Adv. Mater., Vol. 27, No. 44, 7137-7144, 2015, doi: 10.1002/adma.201503069.
doi:10.1002/adma.201503069 Google Scholar
35. Mongia, R. K. and A. Ittipiboon, "Theoretical and experimental investigations on rectangular dielectric resonator antennas," IEEE Trans. Antennas Propag., Vol. 45, No. 9, 1348-1356, 1997, doi: 10.1080/02726343.2017.1261222.
doi:10.1109/8.623123 Google Scholar
36. Marcatili, E. A. J., "Dielectric rectangular waveguide and directional coupler for integrated optics," Bell Syst. Tech. J., Vol. 48, 2071-2102, 1969, doi: 10.1002/j.1538-7305.1969.tb01166.x.
doi:10.1002/j.1538-7305.1969.tb01166.x Google Scholar
37. Gotra, S. and V. S. Pandey, "Critical analysis of the recent trends and advancements in dielectric resonator antennas," Progress In Electromagnetics Research B, Vol. 97, 167-197, 2022.
doi:10.2528/PIERB22092303 Google Scholar
38. Gotra, S., G. Varshney, V. S. Pandey, and R. S. Yaduvanshi, "Super-wideband multi-input-multi-output dielectric resonator antenna," IET Microwaves, Antennas Propag., Vol. 1, No. 1, 1-8, 2019, doi: 10.1049/iet-map.2018.6112. Google Scholar
39. Garg, R., P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, Artech House, 2001.
40. Hussain, N., T. D. Pham, and H.-H. Tran, "Circularly polarized MIMO antenna with wideband and high isolation characteristics for C-band communication systems," Micromachines, Vol. 13, No. 11, 1894, 2022, doi: 10.3390/mi13111894.
doi:10.3390/mi13111894 Google Scholar
41. Prabhu, P., M. Subramani, and K. Sup Kwak, "Analysis of integrated UWB MIMO and CR antenna system using transmission line model with functional verification," Sci. Rep., Vol. 12, No. 1, 1-18, 2022, doi: 10.1038/s41598-022-17550-z.
doi:10.1038/s41598-022-17550-z Google Scholar
42. Moussu, M. A. C., et al. "Reply to comments on `a semi-analytical model of high-permittivity dielectric ring resonators for magnetic resonance imaging'," IEEE Trans. Antennas Propag., Vol. 70, No. 4, 3131, 2022, doi: 10.1109/TAP.2022.3143879.
doi:10.1109/TAP.2022.3143879 Google Scholar
43. Valagiannopoulos, C. A. and N. K. Uzunoglu, "Rigorous analysis of a metallic circular post in a rectangular waveguide with step discontinuity of sidewalls," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 8, 1673-1683, 2007, doi: 10.1109/TMTT.2007.901597.
doi:10.1109/TMTT.2007.901597 Google Scholar