Vol. 129
Latest Volume
All Volumes
PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-02-07
Two-Port Silicon-Based MIMO Nano-Dielectric Resonator Antenna with Polarization Diversity for Photonics Applications
By
Progress In Electromagnetics Research C, Vol. 129, 221-230, 2023
Abstract
This paper demonstrates a compact two-port multi-input multi-output optical nano-antenna with polarization diversity. The proposed antenna consists of a silicon-based radiating element that explores the possibilities of using a highly efficient dielectric resonator over the conventional metallic antennas at THz regime The specific position of the Gaussian pulse excitation generates the 90° phase difference between the field components travelling across the edges of the silver nanostrip feedlines. This generates the orthogonal field components which results in the achievement of circular polarization. Furthermore, any deviation in the excitation position at the port disturbs the field components resulting in linear polarization. This approach provides the polarization diversity using different excitation positions at ports. Considering the analytical stage of this proposed work, the detailed design guidelines and analysis are also discussed. The antenna provides circularly polarized radiations having 6.78% of 3 dB axial-ratio bandwidth and linearly polarized response using the optimized feeding positions at the respective ports for obtaining the polarization diversity performance. The isolation of more than 15 dB is maintained between the ports over the entire operating passband of the antenna. The proposed antenna with the optimized dimensions can be utilized for the optical C- and L-band applications.
Citation
Shailza Gotra, and Vinay Shanker Pandey, "Two-Port Silicon-Based MIMO Nano-Dielectric Resonator Antenna with Polarization Diversity for Photonics Applications," Progress In Electromagnetics Research C, Vol. 129, 221-230, 2023.
doi:10.2528/PIERC22111103
References

1. Novotny, L., "Optical antennas: A new technology that can enhance light-matter interactions," Front. Eng., Vol. 39, No. 4, 100-120, 2012, doi: 10.1364/AOP.1.000438.        Google Scholar

2. Abadal, S., E. Alarcón, A. Cabellos-Aparicio, M. Lemme, and M. Nemirovsky, "Graphene-enabled wireless communication for massive multicore architectures," IEEE Commun. Mag., Vol. 51, No. 11, 137-143, 2013, doi: 10.1109/MCOM.2013.6658665.
doi:10.1109/MCOM.2013.6658665        Google Scholar

3. Pohl, D., "Near-field optics seen as an antenna problem in near-field optic," World Sci., 9-21, 1999.        Google Scholar

4. Mühlschlegel, P., H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Applied physics: Resonant optical antennas," Science, Vol. 308, No. 5728, 1607-1609, 2005, doi: 10.1126/science.1111886.
doi:10.1126/science.1111886        Google Scholar

5. Schuck, P. J., D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett., Vol. 94, No. 1, 14-17, 2005, doi: 10.1103/PhysRevLett.94.017402.
doi:10.1103/PhysRevLett.94.017402        Google Scholar

6. Huang, J.-S., T. Feichtner, P. Biagioni, and B. Hecht, "Impedance matching and emission properties of optical antennas in a nanophotonic circuit," Nano Lett., Vol. 9, No. 5, 1897-1902, 2008, doi: 10.1021/nl803902t.
doi:10.1021/nl803902t        Google Scholar

7. Kinzel, E. C. and X. Xu, "High efficiency excitation of plasmonic waveguides with vertically integrated resonant bowtie apertures," Opt. Express, Vol. 17, No. 10, 8036-45, 2009, doi: 10.1364/oe.17.008036.
doi:10.1364/OE.17.008036        Google Scholar

8. Wen, J., S. Romanov, and U. Peschel, "Excitation of plasmonic gap waveguides by nanoantennas," Opt. Express, Vol. 17, No. 8, 5925-32, 2009, doi: 10.1364/oe.17.005925.
doi:10.1364/OE.17.005925        Google Scholar

9. Sethi, W. T., H. Vettikalladi, H. Fathallah, and M. Himdi, "Nantenna for standard 1550 nm optical communication systems," Int. J. Antennas Propag., Vol. 2016, 1-9, 2016, doi: 10.1155/2016/5429510.
doi:10.1155/2016/5429510        Google Scholar

11. Novotny, L. and N. Van Hulst, "Antennas for light," Nat. Photonics, Vol. 5, No. 2, 83-90, 2011, doi: 10.1038/nphoton.2010.237.
doi:10.1038/nphoton.2010.237        Google Scholar

12. Ulukus, S., et al. "Energy harvesting wireless communications: A review of recent advances," IEEE J. Sel. Areas Commun., Vol. 33, No. 3, 360-381, 2015, doi: 10.1109/JSAC.2015.2391531.
doi:10.1109/JSAC.2015.2391531        Google Scholar

13. Citroni, R., F. Di Paolo, and P. Livreri, "Evaluation of an optical energy harvester for SHM application," AEU - Int. J. Electron. Commun., Vol. 111, 152918, 2019, doi: 10.1016/j.aeue.2019.152918.
doi:10.1016/j.aeue.2019.152918        Google Scholar

14. Walther, M., D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. A. Hegmann, "Terahertz conductivity of thin gold films at the metal-insulator percolation transition," Phys. Rev. B - Condens. Matter Mater. Phys., Vol. 76, No. 12, 1-9, 2007, doi: 10.1103/PhysRevB.76.125408.
doi:10.1103/PhysRevB.76.125408        Google Scholar

15. Mongia, R. K. and P. Bhartia, "Dielectric resonator antennas - A review and general design relations for resonant frequency and bandwidth," Int. J. Microw. Millimeter - Wave Comput. Eng., Vol. 4, No. 3, 230-247, 1994, doi: 10.1002/mmce.4570040304.
doi:10.1002/mmce.4570040304        Google Scholar

16. Luk, K. M. and K.-W. Leung, Dielectric Resonator Antennas, Research Studies Press, 2003.

17. Kajfez, D., A. Elsherbeni, and A. Mokaddem, "Higher order modes in dielectric resonators," IEEE AP-S Antennas Propagat. Symposium, 306-309, 1996.        Google Scholar

18. Kajfez, D., A. W. Glisson, and J. James, "Computed modal field distributions for isolated dielectric resonators," IEEE Trans. Microw., Vol. 32, No. 12, 1609-1616, 1984.
doi:10.1109/TMTT.1984.1132900        Google Scholar

19. Bolivar, P. H., et al. "Measurement of the dielectric constant and loss tangent of high dielectric-constant materials at terahertz frequencies," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 41, 1062-1066, 2003, doi: 10.1109/TMTT.2003.809693.
doi:10.1109/TMTT.2003.809693        Google Scholar

20. Yi, H., S. W. Qu, and C. H. Chan, "Wideband dielectric resonator terahertz reflectarray," ICCEM 2015 - 2015 IEEE International Conference on Computational Electromagnetics, 273-274, 2015, doi: 10.1109/COMPEM.2015.7052631.
doi:10.1109/COMPEM.2015.7052631        Google Scholar

21. Varshney, G., S. Gotra, J. Kaur, V. S. Pandey, and R. S. Yaduvanshi, "Obtaining the circular polarization in a nano-dielectric resonator antenna for photonics applications," Semicond. Sci. Technol., Vol. 34, No. 7, 07LT01, 2019, doi: 10.1088/1361-6641/ab1fd1.
doi:10.1088/1361-6641/ab1fd1        Google Scholar

22. Sidiropoulos, T. P. H., M. P. Nielsen, T. R. Roschuk, A. V. Zayats, S. A. Maier, and R. F. Oulton, "Compact optical antenna coupler for silicon photonics characterized by third-harmonic generation," ACS Photonics, Vol. 1, No. 10, 912-916, 2014, doi: 10.1021/ph5002796.
doi:10.1021/ph5002796        Google Scholar

23. Maram, R., S. Kaushal, J. Azaña, and L. R. Chen, "Recent trends and advances of silicon-based integrated microwave photonics,", Vol. 6, No. 1, 2019.        Google Scholar

24. Toh, B. Y., R. Cahill, and V. F. Fusco, "Understanding and measuring circular polarization," IEEE Trans. Educ., Vol. 46, No. 3, 313-318, 2003, doi: 10.1109/TE.2003.813519.
doi:10.1109/TE.2003.813519        Google Scholar

25. Valagiannopoulos, C. A., M. Mattheakis, S. N. Shirodkar, and E. Kaxiras, "Manipulating polarized light with a planar slab of black phosphorus," J. Phys. Commun., Vol. 1, No. 4, 2017, doi: 10.1088/2399-6528/aa90c8.
doi:10.1088/2399-6528/aa90c8        Google Scholar

26. Sarsen, A. and C. Valagiannopoulos, "Robust polarization twist by pairs of multilayers with tilted optical axes," Phys. Rev. B, Vol. 99, No. 11, 1-10, 2019, doi: 10.1103/PhysRevB.99.115304.
doi:10.1103/PhysRevB.99.115304        Google Scholar

27. Perhirin, S. and Y. Auffret, "Circularly polarized nanoring antenna for uniform overheating applications," Microw. Opt. Technol. Lett., Vol. 55, No. 11, 2562-2568, 2013, doi: 10.1002/mop.
doi:10.1002/mop.27916        Google Scholar

28. Gotra, S., G. Varshney, R. S. Yaduvanshi, and V. S. Pandey, "Dual-band circular polarisation generation technique with the miniaturisation of a rectangular dielectric resonator antenna," IET Microwaves, Antennas Propag., Vol. 13, No. 10, 8-14, 2019, doi: 10.1049/iet-map.2019.0030.
doi:10.1049/iet-map.2019.0030        Google Scholar

29. Sharawi, M. S., "Current misuses and future prospects for printed multiple-input, multiple-output antenna systems," IEEE Antennas Propag. Mag., Vol. 59, No. 2, 162-170, 2017, doi: 10.1109/MAP.2017.2658346.
doi:10.1109/MAP.2017.2658346        Google Scholar

30. Takase, D. and T. Ohtsuki, "Optical wireless MIMO communications (OMIMO)," GLOBECOM - IEEE Glob. Telecommun. Conf., Vol. 2, No. 5, 928-932, 2004, doi: 10.1109/glocom.2004.1378096.
doi:10.1109/GLOCOM.2004.1378096        Google Scholar

31. Chen, Y., B. Weng, and J. Liu, "A novel photonic-based MIMO radar architecture with all channels sharing a single transceiver," IEEE Access, Vol. 7, 165093-165102, 2019, doi: 10.1109/ACCESS.2019.2953105.
doi:10.1109/ACCESS.2019.2953105        Google Scholar

32. Rui, G., R. L. Nelson, and Q. Zhan, "Circularly polarized unidirectional emission via a coupled plasmonic spiral antenna," Opt. Lett., Vol. 36, No. 23, 4533, 2011, doi: 10.1364/ol.36.004533.
doi:10.1364/OL.36.004533        Google Scholar

33. Ding, G., C. Clavero, D. Schweigert, and M. Le, "Thickness and microstructure effects in the optical and electrical properties of silver thin films," AIP Adv., Vol. 5, No. 11, 117234-11, 2015, doi: 10.1063/1.4936637.
doi:10.1063/1.4936637        Google Scholar

34. Headland, D., et al. "Terahertz magnetic mirror realized with dielectric resonator antennas," Adv. Mater., Vol. 27, No. 44, 7137-7144, 2015, doi: 10.1002/adma.201503069.
doi:10.1002/adma.201503069        Google Scholar

35. Mongia, R. K. and A. Ittipiboon, "Theoretical and experimental investigations on rectangular dielectric resonator antennas," IEEE Trans. Antennas Propag., Vol. 45, No. 9, 1348-1356, 1997, doi: 10.1080/02726343.2017.1261222.
doi:10.1109/8.623123        Google Scholar

36. Marcatili, E. A. J., "Dielectric rectangular waveguide and directional coupler for integrated optics," Bell Syst. Tech. J., Vol. 48, 2071-2102, 1969, doi: 10.1002/j.1538-7305.1969.tb01166.x.
doi:10.1002/j.1538-7305.1969.tb01166.x        Google Scholar

37. Gotra, S. and V. S. Pandey, "Critical analysis of the recent trends and advancements in dielectric resonator antennas," Progress In Electromagnetics Research B, Vol. 97, 167-197, 2022.
doi:10.2528/PIERB22092303        Google Scholar

38. Gotra, S., G. Varshney, V. S. Pandey, and R. S. Yaduvanshi, "Super-wideband multi-input-multi-output dielectric resonator antenna," IET Microwaves, Antennas Propag., Vol. 1, No. 1, 1-8, 2019, doi: 10.1049/iet-map.2018.6112.        Google Scholar

39. Garg, R., P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, Artech House, 2001.

40. Hussain, N., T. D. Pham, and H.-H. Tran, "Circularly polarized MIMO antenna with wideband and high isolation characteristics for C-band communication systems," Micromachines, Vol. 13, No. 11, 1894, 2022, doi: 10.3390/mi13111894.
doi:10.3390/mi13111894        Google Scholar

41. Prabhu, P., M. Subramani, and K. Sup Kwak, "Analysis of integrated UWB MIMO and CR antenna system using transmission line model with functional verification," Sci. Rep., Vol. 12, No. 1, 1-18, 2022, doi: 10.1038/s41598-022-17550-z.
doi:10.1038/s41598-022-17550-z        Google Scholar

42. Moussu, M. A. C., et al. "Reply to comments on `a semi-analytical model of high-permittivity dielectric ring resonators for magnetic resonance imaging'," IEEE Trans. Antennas Propag., Vol. 70, No. 4, 3131, 2022, doi: 10.1109/TAP.2022.3143879.
doi:10.1109/TAP.2022.3143879        Google Scholar

43. Valagiannopoulos, C. A. and N. K. Uzunoglu, "Rigorous analysis of a metallic circular post in a rectangular waveguide with step discontinuity of sidewalls," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 8, 1673-1683, 2007, doi: 10.1109/TMTT.2007.901597.
doi:10.1109/TMTT.2007.901597        Google Scholar