1. Bhuva, D., K. Sathashivan, A. Patil, et al. "Smart car systems: A need in smart city," International Conference on Smart City and Emerging Technology (ICSCET), Vol. 1-3, 2018, DOI: 10.1109/ICSCET.2018.8537299. Google Scholar
2. Miranda, J., M. Memon, J. Cabral, et al. "Eye on patient care: Continuous health monitoring: Design and implementation of a wireless platform for healthcare applications," IEEE Microw. Mag., Vol. 18, No. 2, 83-94, 2017.
doi:10.1109/MMM.2016.2635898 Google Scholar
3. Xu, Q., B. Wang, F. Zhang, et al. "Wireless AI in smart car: How smart a car can be?," IEEE Access, Vol. 8, 55091-55112, 2020.
doi:10.1109/ACCESS.2020.2978531 Google Scholar
4. Xu, G., Q. Zhang, B. Li, et al. "Smart car care systems and its technology prospects with service robots function," IEEE International Conference on Information and Automation (ICIA), 1289-1294, 2014, DOI: 10.1109/ICInfA.2014.6932847.
doi:10.1109/ICInfA.2014.6932847 Google Scholar
5. Zhao, X. and J. Jin, "High gain directional antenna array for WiMAX application," Trans. Tianjin Univ., Vol. 20, No. 5, 364-367, 2014.
doi:10.1007/s12209-014-2255-1 Google Scholar
6. Varma, R. and J. Ghosh, "Multi-band proximity coupled microstrip antenna for wireless applications," Microw. Opt. Technol. Lett., Vol. 60, No. 2, 424-428, 2018.
doi:10.1002/mop.30985 Google Scholar
7. Chen, H.-D., C.-Y.-D. Sim, J.-Y. Wu, et al. "Broadband high-gain microstrip array antennas for WiMAX base station," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 8, 3977-3980, 2012.
doi:10.1109/TAP.2012.2201116 Google Scholar
8. Kumar, P. P. and R. Nakkeeran, "A new corrugated tooth like slot microstrip antenna for WiMAX/satellite applications," Electrical Electronics and Computer Science (SCEECS), 2014 IEEE Students' Conference, 1-5, 2014. Google Scholar
9. Pandey, R. and D. K. Kumar Vishwakarma, "A fractalized meander-line EBG-based microstrip teeth-like patch slot antenna for use in satellite and defense applications," Microw. Opt. Technol. Lett., Vol. 58, No. 8, 2010-2015, 2016.
doi:10.1002/mop.29968 Google Scholar
10. Singh, A., M. Aneesh, and J. A. Ansari, "Analysis of microstrip line fed patch antenna for wireless communications," Open Eng., Vol. 7, No. 1, 279-286, 2017.
doi:10.1515/eng-2017-0034 Google Scholar
11. Alharbi, S., R. M. Shubair, and A. Kiourti, "Flexible antennas for wearable applications: Recent advances and design challenges," 12th Eur. Conference on Antennas and Propagation (EuCAP), 1-3, 2018. Google Scholar
12. Song, L. and Y. Rahmat-Samii, "Patch antenna folding effects for wearable applications: Guidelines and design curves," 2018 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM), 1-2, 2018. Google Scholar
13. Song, L. and Y. Rahmat-Samii, "A systematic investigation of rectangular patch antenna bending effects for wearable applications," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 5, 2219-2228, 2018, DOI: 10.1109/TAP.2018.2809469.
doi:10.1109/TAP.2018.2809469 Google Scholar
14. Froehle, P., T. Przybylski, C. McDonald, et al. "Flexible antenna for wireless body area network," IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Sci. Meeting, 1214-1215, 2015.
doi:10.1109/APS.2015.7304996 Google Scholar
15. Ahmed, S., F. A. Tahir, A. Shamim, et al. "A compact kapton-based inkjet-printed multiband antenna for flexible wireless devices," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1802-1805, 2015, DOI: 10.1109/LAWP.2015.2424681.
doi:10.1109/LAWP.2015.2424681 Google Scholar
16. Rabobason, Y. G., G. P. Rigas, S. Swaisaenyakorn, et al. "Design and synthesis of flexible switching 1×2 antenna array on Kapton substrate," Eur. Phys. J. Appl. Phys., Vol. 74, No. 3, 1-10, 2016.
doi:10.1051/epjap/2016160082 Google Scholar
17. Rabobason, Y. G., G. P. Rigas, S. Swaisaenyakorn, et al. "Design of flexible passive antenna array on Kapton substrate," Progress In Electromagnetics Research C, Vol. 63, 105-117, 2016.
doi:10.2528/PIERC15120906 Google Scholar
18. Phan, H. P., T.-P. Vuong, P. Benech, et al. "Study of bending effects of a wideband paper-based printed microstrip-fed antenna," Microw. Opt. Technol. Lett., Vol. 62, No. 4, 1785-1794, 2020, DOI: 10.1002/mop.32233.
doi:10.1002/mop.32233 Google Scholar
19. Boeykens, F., L. Vallozzi, and H. Rogier, "Cylindrical bending of deformable textile rectangular patch antennas," Int. J. Antennas Propag., Vol. 2012, 1-11, 2012, DOI: 10.1155/2012/170420.
doi:10.1155/2012/170420 Google Scholar
20. Mohandoss, S., S. K. Palaniswamy, R. R. Thipparaju, et al. "On the bending and time domain analysis of compact wideband flexible monopole antennas," AEU Int. J. Electron. Commun., Vol. 101, 168-181, 2019, DOI: 10.1016/j.aeue.2019.01.015.
doi:10.1016/j.aeue.2019.01.015 Google Scholar
21. Kao, H.-L. and C.-H. Chuang, "Folding effects on a fabric-based antenna for wearable applications," 70th Electronic Components and Technology Conference (ECTC), IEEE Publications, Vol. 2020, DOI: 10.1109/ECTC32862.2020.00261, 1665-1670, 2020. Google Scholar
22. Shafaet-Uz-Zaman, K. and M. A. Matin, "Analysis of folding and human body effects on sleeve-badge textile antenna performance," TEQIP III Sponsored International Conference on Microwave Integrated Circuits, Photonics and Wireless Networks (IMICPW), Vol. 2019, 10-14, 2019, DOI: 10.1109/IMICPW.2019.8933267. Google Scholar
23. Ma, J., S. Li, and S. Zhang, "Folding effect on antenna with radiation performance for electronic tag," Proc. 2014 3rd Asia-Pacic Conference on Antennas and Propagation, Vol. 619-622, 2014, DOI: 10.1109/APCAP.2014.6992571. Google Scholar
24. Boyuan, M., J. Pan, E. Wang, et al. "Conformal bent dielectric resonator antennas with curving ground plane," IEEE Trans. Antennas Propag., Vol. 67, No. 3, 1931-1936, March 2018, DOI: 10.1109/TAP.2018.2889146.
doi:10.1109/TAP.2018.2889146 Google Scholar
25. Simorangkir, R. B. V. B., Y. Yang, K. P. Esselle, et al. "A method to realize robust flexible electronically tunable antennas using polymer-embedded conductive fabric," IEEE Trans. Antennas Propag., Vol. 66, No. 1, 50-58, 2018, DOI: 10.1109/TAP.2017.2772036.
doi:10.1109/TAP.2017.2772036 Google Scholar
26. Ibanez-Labiano, I., M. S. Ergoktas, C. Kocabas, et al. "Graphene-based soft wearable antennas," Appl. Mater. Today, Vol. 20, 2020, DOI: 10.1016/j.apmt.2020.100727. Google Scholar
27. Balanis, C., Antenna Theory: Analysis and Design, 3rd Ed., John Wiley & Sons, Inc., 2005.
28. Hammer, P., D. van Bouchaute, D. Verschraeven, et al. "A model for calculating the radiation field of microstrip antennas," IEEE Trans. Antennas Propag., Vol. 27, No. 2, 267-270, 1979, DOI: 10.1109/TAP.1979.1142054.
doi:10.1109/TAP.1979.1142054 Google Scholar
29. Aas, J. A. and K. Jakobsen, "Radiation patterns of rectangular microstrip antennas on finite ground planes," 12th Eur. Microwave Conference, 384-389, 1982, DOI: 10.1109/EUMA.1982.333091. Google Scholar
30. Olaimat, M. M. and N. I. Dib, "Improved formulae for the resonant frequencies of triangular microstrip patch antennas," Int. J. Electron, Vol. 98, No. 3, 407-424, 2011, DOI: 10.1080/00207217.2010.547811.
doi:10.1080/00207217.2010.547811 Google Scholar
31. Alex-Amor, A., Á. Palomares-Caballero, J. Moreno-Núñez, et al. "Ultrawideband inkjet-printed monopole antennas for energy harvesting application," Microw. Opt. Technol. Lett., Vol. 63, No. 6, 1719-1726, 2021, DOI: 10.1002/mop.32803.
doi:10.1002/mop.32803 Google Scholar
32. Murad, N. M., L. Rajaoarisoa, S. Lalléchère, et al. "Analysis of microstrip coupled line based data signal and energy hybrid receiver," Journal of Electromagnetic Waves and Applications, Vol. 34, No. 18, 2433-2454, 2020.
doi:10.1080/09205071.2020.1819443 Google Scholar