1. Chan, C. C., K. T. Chau, and J. Z. Jiang, "Novel permanent magnet motor drives for electric vehicles," IEEE Trans. Ind. Electr., Vol. 43, No. 2, 331-339, 1996.
doi:10.1109/41.491357 Google Scholar
2. Chan, C. C., "The state of the art of electric, hybrid, and fuel cell vehicles," Proc. of the IEEE, Vol. 95, No. 4, 704-718, 2007.
doi:10.1109/JPROC.2007.892489 Google Scholar
3. Zhu, Z. Q. and D. Evans, "Overview of recent advances in innovative electrical machines with reference to magnetically geared switched flux machines," Proceedings of International Conference on Electrical Machines and Systems, 1-10, 2014. Google Scholar
4. Amara, Y., J. Lucidarme, M. Gabsi, M. Lécrivain, A. Hamid, B. Ahmed, and A. D. Akémakou, "A new topology of hybrid synchronous machine," IEEE Trans. Ind. Appl., Vol. 37, No. 5, 1273-1278, 2001.
doi:10.1109/28.952502 Google Scholar
5. Wang, L. L., J. X. Shen, P. C. K. Luk, W. Z. Fei, C. F. Wang, and H. Hao, "Development of a magnetic-geared permanent-magnet brushless motor," IEEE Trans. Magn., Vol. 45, No. 10, 4578-4581, 2001.
doi:10.1109/TMAG.2009.2023071 Google Scholar
6. Toba, A. and T. A. Lipo, "Generic torque-maximizing design methodology of the surface permanent magnet vernier machine," IEEE Trans. Ind. Appl., Vol. 36, No. 6, 1539-1546, 2000.
doi:10.1109/28.887204 Google Scholar
7. Chau, K. T., D. Zhang, J. Z. Jiang, C. Liu, and Y. Zhang, "Design of a magnetic-geared outer-rotor permanent-magnetic brushless motor for electric vehicles," IEEE Trans. Magn., Vol. 43, No. 6, 2504-2506, 2007.
doi:10.1109/TMAG.2007.893714 Google Scholar
8. Jian, L. N. and K. T. Chau, "Analytical calculation of magnetic field distribution in coaxial magnetic gears," Progress In Electromagnetics Research, Vol. 92, 1-16, 2009.
doi:10.2528/PIER09032301 Google Scholar
9. Jian, L. N. and K. T. Chau, "Design and analysis of a magnetic-geared electronic-continuously variable transmission system using finite element method," Progress In Electromagnetics Research, Vol. 107, 47-61, 2010.
doi:10.2528/PIER10062806 Google Scholar
10. Jian, L. N., G. Xu, Y. Gong, J. Song, J. Liang, and M. Chang, "Electromagnetic design and analysis of a novel magnetic-gear-integrated wind power generator using time-stepping finite element method," Progress In Electromagnetics Research, Vol. 113, 351-367, 2011.
doi:10.2528/PIER10121603 Google Scholar
11. Jian, L. N., G. Xu, J. Song, H. Xue, and D. Zhao, "Optimum design for improving modulating-effect of coaxial magnetic gear using response surface methodology and genetic algorithm," Progress In Electromagnetics Research, Vol. 116, 297-312, 2011.
doi:10.2528/PIER11032316 Google Scholar
12. Xu, G., L. N. Jian, W. Gong, and W. Zhao, "Quantitative comparison of flux-modulated interior permanent magnet machines with distributed windings and concentrated windings," Progress In Electromagnetics Research, Vol. 129, 109-123, 2012.
doi:10.2528/PIER12040901 Google Scholar
13. Li, J. G., K. T. Chau, J. Z. Jiang, C. H. Liu, and W. Li, "A new efficient permanent-magnet vernier machine for wind power generation," IEEE Trans. Magn., Vol. 46, No. 6, 1475-1478, 2010.
doi:10.1109/TMAG.2010.2044636 Google Scholar
14. Jian, L. N., J. N. Liang, Y. J. Shi, and G. Xu, "A novel double-winding permanent magnet flux modulated machine for stand-alone wind power generation," Progress In Electromagnetics Research, Vol. 142, 275-289, 2013.
doi:10.2528/PIER13072304 Google Scholar
15. Kong, W. Q., Y. Zhang, M. M. Huang, and Q. Z. Huang, "Flux concentrating multi-tooth splitting poles permanent magnet vernier machine cogging torque optimization and experimental verification," INT J. Appl. Electrom, Vol. 56, No. 4, 1-12, 2018. Google Scholar
16. Xu, L., W. X. Zhao, G. H. Liu, and C. Song, "Design optimization of a spoke-type permanent-magnet vernier machine for torque density and power factor improvement," IEEE Trans. Veh. Technol., Vol. 68, No. 4, 3446-3456, 2019.
doi:10.1109/TVT.2019.2902729 Google Scholar
17. Zhang, Y., D. Li, P. Yan, X. Ren, and J. Ma, "A high torque density claw pole permanent-magnets vernier machine," IEEE Trans. Ind. Electron., Vol. 10, No. 2, 1756-1765, 2022. Google Scholar
18. Guan, Q., Y. T. Fang, and P. D. Pfister, "A novel concentrated-winding vernier pseudo-direct-drive permanent-magnet machine," IEEE Trans. Magn., Vol. 58, No. 2, 8103805, 2022. Google Scholar
19. Wu, L. L. and R. H. Qu, "A novel dual-stator vernier permanent magnet machine with improved power factor," IEEE Trans. Ind. Appl., Vol. 58, No. 3, 3486-3496, 2022.
doi:10.1109/TIA.2022.3155540 Google Scholar
20. Li, X. L., K. T. Chau, and M. Cheng, "Analysis, design and experimental verification of a field-modulated permanent-magnet machine for direct-drive wind turbines," IET Electr. Power Appl., Vol. 9, No. 2, 150-159, 2015.
doi:10.1049/iet-epa.2014.0156 Google Scholar
21. Yang, H., H. Y. Lin, Z. Q. Zhu, S. H. Fang, and Y. K. Huang, "Novel flux-regulatable dual-magnet vernier memory machines for electric vehicle propulsion," IEEE Trans. Appl. Supercond., Vol. 24, No. 5, 0601205, 2014.
doi:10.1109/TASC.2014.2351259 Google Scholar
22. Zhang, Y., H. Y. Lin, S. H. Fang, and Y. K. Huang, "Comparison and analysis of dual stator permanent magnet vernier machines with different pole/slot combinations for low speed direct drive applications," Int J. Appl. Electrom., Vol. 50, 617-626, 2016. Google Scholar
23. Liu, C. H., J. Zhong, and K. T. Chau, "A novel flux-controllable vernier permanent-magnet machine," IEEE Trans. Magn., Vol. 47, No. 10, 4238-4241, 2011.
doi:10.1109/TMAG.2011.2152374 Google Scholar
24. Amara, Y., L. Vido, M. Gabsi, E. Hoang, and B. Hamid, "Hybrid excitation synchronous machines: Energy-efficient solution for vehicles propulsion," IEEE Trans. Veh. Technol., Vol. 58, No. 5, 2137-2149, 2009.
doi:10.1109/TVT.2008.2009306 Google Scholar
25. Zhang, Y., Q. Z. Huang, and M. M. Huang, "Design and experimental verification of adaptive speed region control for hybrid excitation claw-pole synchronous machine," Progress In Electromagnetics Research C, Vol. 88, 195-205, 2018.
doi:10.2528/PIERC18092603 Google Scholar