1. Kovitz, J. M. and Y. Rahmat-Samii, "Using thick substrates and capacitive probe compensation to enhance the bandwidth of traditional cp patch antennas," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 10, 4970-4979, 2014.
doi:10.1109/TAP.2014.2343239 Google Scholar
2. Serra, A. A., P. Nepa, G. Manara, G. Tribellini, and S. Cioci, "A wide-band dual-polarized stacked patch antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 141-143, 2007.
doi:10.1109/LAWP.2007.893101 Google Scholar
3. Kim, S. M. and W. G. Yang, "Single feed wideband circular polarised patch antenna," Electronics Letters, Vol. 43, No. 13, 1, 2007.
doi:10.1049/el:20070677 Google Scholar
4. Sajin, G. I., "Impedance measurement of millimeter wave metamaterial antennas by transmission line stubs," Progress In Electromagnetics Research Letters, Vol. 26, 59-68, 2011.
doi:10.2528/PIERL11072004 Google Scholar
5. Zhang, Y., J. Von Hagen, M. Younis, C. Fischer, and W. Wiesbeck, "Planar artificial magnetic conductors and patch antennas," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2704-2712, 2003.
doi:10.1109/TAP.2003.817550 Google Scholar
6. Nakamura, T. and T. Fukusako, "Broadband design of circularly polarized microstrip patch antenna using artificial ground structure with rectangular unit cells," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 6, 2103-2110, 2011.
doi:10.1109/TAP.2011.2143656 Google Scholar
7. Ghassemi, N. and K. Wu, "High-efficient patch antenna array for e-band gigabyte point-to-point wireless services," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 1261-1264, 2012.
doi:10.1109/LAWP.2012.2224087 Google Scholar
8. Kim, D.-Y., Y. Lim, H.-S. Yoon, and S. Nam, "High-efficiency W-band electroforming slot array antenna," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 4, 1854-1857, 2015.
doi:10.1109/TAP.2015.2398129 Google Scholar
9. Esselle, K., A. K. Verma, et al. "Compact circularly polarized enhanced gain microstrip antenna on high permittivity substrate," 2005 Asia-Pacific Microwave Conference Proceedings, Vol. 4, 4, IEEE, 2005. Google Scholar
10. Methfessel, S. and L.-P. Schmidt, "Design of a balanced-fed patch-excited horn antenna at millimeter-wave frequencies," Proceedings of the Fourth European Conference on Antennas and Propagation, 1-4, IEEE, 2010. Google Scholar
11. Zhu, H., S. W. Cheung, and T. I. Yuk, "Enhancing antenna boresight gain using a small metasurface lens: Reduction in half-power beamwidth," IEEE Antennas and Propagation Magazine, Vol. 58, No. 1, 35-44, 2016.
doi:10.1109/MAP.2015.2501235 Google Scholar
12. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ϵ and μ," Soviet Physics Uspekhi, Vol. 10, No. 4, 509, 1968.
doi:10.1070/PU1968v010n04ABEH003699 Google Scholar
13. Pendry, J. B., "Negative refraction makes a perfect lens," Physical Review Letters, Vol. 85, No. 18, 3966, 2000.
doi:10.1103/PhysRevLett.85.3966 Google Scholar
14. Cai, W., U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nature Photonics, Vol. 1, No. 4, 224-227, 2007.
doi:10.1038/nphoton.2007.28 Google Scholar
15. Marques, R., F. Martin, and M. Sorolla, Metamaterials with Negative Parameters: Theory, Design, and Microwave Applications, John Wiley & Sons, 2011.
16. Samantaray, D. and S. Bhattacharyya, "A gain-enhanced slotted patch antenna using metasurface as superstrate configuration," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 9, 6548-6556, 2020.
doi:10.1109/TAP.2020.2990280 Google Scholar
17. Singh, A. K., M. P. Abegaonkar, and S. K. Koul, "High-gain and high-aperture efficiency cavity resonator antenna using metamaterial superstrate," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2388-2391, 2017.
doi:10.1109/LAWP.2017.2719864 Google Scholar
18. Kim, J. H., C.-H. Ahn, and J.-K. Bang, "Antenna gain enhancement using a holey superstrate," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 3, 1164-1167, 2016.
doi:10.1109/TAP.2016.2518650 Google Scholar
19. Rajanna, P. K. T., K. Rudramuni, and K. Kandasamy, "A high-gain circularly polarized antenna using zero-index metamaterial," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 6, 1129-1133, 2019.
doi:10.1109/LAWP.2019.2910805 Google Scholar
20. Rao, N. and V. D. Kumar, "Gain and bandwidth enhancement of a microstrip antenna using partial substrate removal in multiple-layer dielectric substrate," Progress In Electromagnetics Research Symposium Proceedings, 1285-1289, 2011. Google Scholar
21. Attia, H. and O. M. Ramahi, "EBG superstrate for gain and bandwidth enhancement of microstrip array antennas," 2008 IEEE Antennas and Propagation Society International Symposium, 1-4, 2008. Google Scholar
22. Nishiyama, E., M. Aikawa, and S. Egashira, "Stacked microstrip antenna for wideband and high gain," IEE Proceedings --- Microwaves, Antennas and Propagation, Vol. 151, No. 2, 2000. Google Scholar
23. Honari, M. M., A. Abdipour, and G. Moradi, "Bandwidth and gain enhancement of an aperture antenna with modified ring patch," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1413-1416, 2011.
doi:10.1109/LAWP.2011.2178998 Google Scholar
24. Mosallaei, H. and K. Sarabandi, "Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate," IEEE Transactions on antennas and propagation, Vol. 52, No. 9, 2403-2414, 2004.
doi:10.1109/TAP.2004.834135 Google Scholar
25. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2075-2084, 1999.
doi:10.1109/22.798002 Google Scholar
26. Joshi, J. G., S. S. Pattnaik, S. Devi, and M. R. Lohokare, "Frequency switching of electrically small patch antenna using metamaterial loading," Indian J. Radio Sp. Phys., Vol. 40, No. 3, 159-165, 2011. Google Scholar
27. Arora, C., S. S. Pattnaik, and R. N. Baral, "Metamaterial inspired DNG superstrate for performance improvement of microstrip patch antenna array," Progress In Electromagnetics Research B, Vol. 76, 73-85, 2017.
doi:10.2528/PIERB17041405 Google Scholar