Vol. 129
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-01-29
Design and Optimization of a Reverse Salient Pole Flux Controlled Permanent Magnet Motor
By
Progress In Electromagnetics Research C, Vol. 129, 127-141, 2023
Abstract
This paper presents a novel reverse salient pole flux controllable permanent magnet (RSP-FCPM) motor topology, and the motor rotor is reasonably designed to have reverse salient pole characteristics and flux controllable characteristics. After selecting the design variables for the RSP-FCPM motor using sensitivity analysis, a multi-objective genetic algorithm is applied for multi-objective optimization. The optimized RSP-FCPM motor is simulated and compared, and the results show that the optimal RSP-FCPM motor has better flux weakening capability, wider speed range, and constant power output area. it can solve the problem of difficult flux changes of the conventional interior permanent magnet motor, and other electromagnetic performances are also more advantageous. To confirm the reliability of the rotor structure during operation, a stress analysis of the rotor is performed, and the results show that the rotor structure can fully withstand high-speed and high-temperature conditions and can operate safely and stably. It also has more advantages in noise performance, which has great prospects for application in the field of electric vehicles.
Citation
Xiping Liu, Wenrui Wang, Siting Zhu, Yun Gao, and Jingya Fu, "Design and Optimization of a Reverse Salient Pole Flux Controlled Permanent Magnet Motor," Progress In Electromagnetics Research C, Vol. 129, 127-141, 2023.
doi:10.2528/PIERC22112901
References

1. Athavale, A., K. Sasaki, B. S. Gagas, T. Kato, and R. D. Lorenz, "Variable Flux Permanent Magnet Synchronous Machine (VF-PMSM) design methodologies to meet electric vehicle traction requirements with reduced losses," IEEE Transactions on Industry Applications, Vol. 53, No. 5, 4318-4326, 2017.
doi:10.1109/TIA.2017.2701340

2. Babetto, C., G. Bacco, and N. Bianchi, "Synchronous reluctance machine optimization for high-speed applications," IEEE Transactions on Energy Conversion, Vol. 33, No. 3, 1266-1273, 2018.
doi:10.1109/TEC.2018.2800536

3. Gagas, B. S., K. Sasaki, A. Athavale, T. Kato, and R. D. Lorenz, "Magnet temperature effects on the useful properties of variable flux PM synchronous machines and a mitigating method for magnetization changes," IEEE Transactions on Industry Applications, Vol. 53, No. 3, 2189-2199, 2017.
doi:10.1109/TIA.2017.2674627

4. Kim, J., J. Choi, K. Lee, and S. Lee, "Design and analysis of surface-mounted-type variable flux permanent magnet motor for wide-speed range applications," IEEE Transactions on Magnetics, Vol. 51, No. 1, 1-4, 2015.

5. Zhao, X. and S. Niu, "Design and optimization of a novel slot-PM-assisted variable flux reluctance generator for hybrid electric vehicles," IEEE Transactions on Energy Conversion, Vol. 33, No. 4, 2102-2111, 2018.
doi:10.1109/TEC.2018.2847292

6. Zhang, S., P. Zheng, T. M. Jahns, L. Cheng, M. Wang, and Y. Sui, "A novel variable-flux permanent-magnet synchronous machine with quasi-series magnet configuration and passive flux barrier," IEEE Transactions on Magnetics, Vol. 54, No. 1, 1-5, 2018.
doi:10.1109/TMAG.2017.2751546

7. Yu, C. and K. T. Chau, "Design, analysis, and control of DC-excited memory motors," IEEE Transactions on Energy Conversion, Vol. 26, No. 2, 479-489, 2011.
doi:10.1109/TEC.2010.2085048

8. Gong, Y., K. T. Chau, J. Z. Jiang, C. Yu, and W. Li, "Analysis of doubly salient memory motors using preisach theory," IEEE Transactions on Magnetics, Vol. 45, No. 10, 4676-4679, 2009.
doi:10.1109/TMAG.2009.2021409

9. Liu, H., H. Lin, Z. Q. Zhu, M. Huang, and P. Jin, "Permanent magnet remagnetizing physics of a variable flux memory motor," IEEE Transactions on Magnetics, Vol. 46, No. 6, 1679-1682, 2010.
doi:10.1109/TMAG.2010.2044638

10. Chen, D., X. Zhu, L. Quan, Q. Ding, Z. Wang, and M. Cheng, "Electromagnetic performance analysis and fault-tolerant control of new doubly salient flux memory motor drive," 2010 International Conference on Electrical Machines and Systems, 834-838, 2010.

11. Aoyama, M. and T. Noguchi, "Study and experimental performance evaluation of flux intensifying PM motor with variable leakage magnetic flux," Electrical Engineering in Japan, Vol. 207, No. 4, 36-54, 2019.
doi:10.1002/eej.23162

12. Aljehaimi, A. M. and P. Pillay, "Operating envelopes of the variable-flux machine with positive reluctance torque," IEEE Transactions on Transportation Electrification, Vol. 4, No. 3, 707-719, 2018.
doi:10.1109/TTE.2018.2828385

13. Chen, Y., X. Zhu, L. Quan, Z. Xiang, Y. Du, and X. Bu, "A V-shaped PM vernier motor with enhanced flux-modulated effect and low torque ripple," IEEE Transactions on Magnetics, Vol. 54, No. 1, 1-4, 2018.
doi:10.1109/TMAG.2017.2754370

14. Limsuwan, N., T. Kato, K. Akatsu, and R. D. Lorenz, "Design and evaluation of a variable-flux flux-intensifying interior permanent-magnet machine," IEEE Transactions on Industry Applications, Vol. 50, No. 2, 1015-1024, 2014.
doi:10.1109/TIA.2013.2273482

15. Li, J. and K. Wang, "A parallel hybrid excited machine using consequent pole rotor and AC field winding," IEEE Transactions on Magnetics, Vol. 55, No. 6, 1-5, 2019.

16. Li, N., X. H. Fu, J. Zhu, M. Y. Lin, G. D. Yang, Y. Kong, et al. "Hybrid-excited series permanent magnet axial field flux switching memory machine," IEEE Transactions on Applied Superconductivity, Vol. 29, No. 2, 1-5, 2019.

17. Zheng, Y., L. Wu, Y. Fang, X. Huang, and Q. Lu, "A hybrid interior permanent magnet variable flux memory machine using two-part rotor," IEEE Transactions on Magnetics, Vol. 55, No. 7, 1-8, 2019.

18. Yu, J., C. Liu, Z. Song, and H. Zhao, "Permeance and inductance modeling of a double-stator hybrid-excited flux-switching permanent-magnet machine," IEEE Transactions on Transportation Electrification, Vol. 6, No. 3, 1134-1145, 2020.
doi:10.1109/TTE.2020.3000953

19. Kato, T., M. Minowa, H. Hijikata, K. Akatsu, and R. D. Lorenz, "Design methodology for variable leakage flux IPM for automobile traction drives," IEEE Transactions on Industry Applications, Vol. 51, No. 5, 3811-3821, 2015.
doi:10.1109/TIA.2015.2439642

20. Aoyama, M. and T. Noguchi, "Study and experimental performance evaluation of flux intensifying PM motor with variable leakage magnetic flux," Electrical Engineering in Japan, Vol. 207, No. 4, 36-54, 2019.
doi:10.1002/eej.23162

21. Fan, W., X. Zhu, L. Quan, W. Wu, L. Xu, and Y. Liu, "Flux-weakening capability enhancement design and optimization of a controllable leakage flux multilayer barrier PM motor," IEEE Transactions on Industrial Electronics, Vol. 68, No. 9, 7814-7825, 2021.
doi:10.1109/TIE.2020.3016253

22. Huang, L. R., J. H. Feng, S. Y. Guo, Y. F. Li, J. X. Shi, and Z. Q. Zhu, "Rotor shaping method for torque ripple mitigation in variable flux reluctance machines," IEEE Transactions on Energy Conversion, Vol. 33, No. 3, 1579-1589, 2018.
doi:10.1109/TEC.2018.2829493

23. Zhu, X., J. Huang, L. Quan, Z. Xiang, and B. Shi, "Comprehensive sensitivity analysis and multi-objective optimization research of permanent magnet flux-intensifying motors," IEEE Transactions on Industrial Electronics, Vol. 66, No. 4, 2613-2627, 2019.
doi:10.1109/TIE.2018.2849961