1. Athavale, A., K. Sasaki, B. S. Gagas, T. Kato, and R. D. Lorenz, "Variable Flux Permanent Magnet Synchronous Machine (VF-PMSM) design methodologies to meet electric vehicle traction requirements with reduced losses," IEEE Transactions on Industry Applications, Vol. 53, No. 5, 4318-4326, 2017.
doi:10.1109/TIA.2017.2701340 Google Scholar
2. Babetto, C., G. Bacco, and N. Bianchi, "Synchronous reluctance machine optimization for high-speed applications," IEEE Transactions on Energy Conversion, Vol. 33, No. 3, 1266-1273, 2018.
doi:10.1109/TEC.2018.2800536 Google Scholar
3. Gagas, B. S., K. Sasaki, A. Athavale, T. Kato, and R. D. Lorenz, "Magnet temperature effects on the useful properties of variable flux PM synchronous machines and a mitigating method for magnetization changes," IEEE Transactions on Industry Applications, Vol. 53, No. 3, 2189-2199, 2017.
doi:10.1109/TIA.2017.2674627 Google Scholar
4. Kim, J., J. Choi, K. Lee, and S. Lee, "Design and analysis of surface-mounted-type variable flux permanent magnet motor for wide-speed range applications," IEEE Transactions on Magnetics, Vol. 51, No. 1, 1-4, 2015. Google Scholar
5. Zhao, X. and S. Niu, "Design and optimization of a novel slot-PM-assisted variable flux reluctance generator for hybrid electric vehicles," IEEE Transactions on Energy Conversion, Vol. 33, No. 4, 2102-2111, 2018.
doi:10.1109/TEC.2018.2847292 Google Scholar
6. Zhang, S., P. Zheng, T. M. Jahns, L. Cheng, M. Wang, and Y. Sui, "A novel variable-flux permanent-magnet synchronous machine with quasi-series magnet configuration and passive flux barrier," IEEE Transactions on Magnetics, Vol. 54, No. 1, 1-5, 2018.
doi:10.1109/TMAG.2017.2751546 Google Scholar
7. Yu, C. and K. T. Chau, "Design, analysis, and control of DC-excited memory motors," IEEE Transactions on Energy Conversion, Vol. 26, No. 2, 479-489, 2011.
doi:10.1109/TEC.2010.2085048 Google Scholar
8. Gong, Y., K. T. Chau, J. Z. Jiang, C. Yu, and W. Li, "Analysis of doubly salient memory motors using preisach theory," IEEE Transactions on Magnetics, Vol. 45, No. 10, 4676-4679, 2009.
doi:10.1109/TMAG.2009.2021409 Google Scholar
9. Liu, H., H. Lin, Z. Q. Zhu, M. Huang, and P. Jin, "Permanent magnet remagnetizing physics of a variable flux memory motor," IEEE Transactions on Magnetics, Vol. 46, No. 6, 1679-1682, 2010.
doi:10.1109/TMAG.2010.2044638 Google Scholar
10. Chen, D., X. Zhu, L. Quan, Q. Ding, Z. Wang, and M. Cheng, "Electromagnetic performance analysis and fault-tolerant control of new doubly salient flux memory motor drive," 2010 International Conference on Electrical Machines and Systems, 834-838, 2010. Google Scholar
11. Aoyama, M. and T. Noguchi, "Study and experimental performance evaluation of flux intensifying PM motor with variable leakage magnetic flux," Electrical Engineering in Japan, Vol. 207, No. 4, 36-54, 2019.
doi:10.1002/eej.23162 Google Scholar
12. Aljehaimi, A. M. and P. Pillay, "Operating envelopes of the variable-flux machine with positive reluctance torque," IEEE Transactions on Transportation Electrification, Vol. 4, No. 3, 707-719, 2018.
doi:10.1109/TTE.2018.2828385 Google Scholar
13. Chen, Y., X. Zhu, L. Quan, Z. Xiang, Y. Du, and X. Bu, "A V-shaped PM vernier motor with enhanced flux-modulated effect and low torque ripple," IEEE Transactions on Magnetics, Vol. 54, No. 1, 1-4, 2018.
doi:10.1109/TMAG.2017.2754370 Google Scholar
14. Limsuwan, N., T. Kato, K. Akatsu, and R. D. Lorenz, "Design and evaluation of a variable-flux flux-intensifying interior permanent-magnet machine," IEEE Transactions on Industry Applications, Vol. 50, No. 2, 1015-1024, 2014.
doi:10.1109/TIA.2013.2273482 Google Scholar
15. Li, J. and K. Wang, "A parallel hybrid excited machine using consequent pole rotor and AC field winding," IEEE Transactions on Magnetics, Vol. 55, No. 6, 1-5, 2019. Google Scholar
16. Li, N., X. H. Fu, J. Zhu, M. Y. Lin, G. D. Yang, Y. Kong, et al. "Hybrid-excited series permanent magnet axial field flux switching memory machine," IEEE Transactions on Applied Superconductivity, Vol. 29, No. 2, 1-5, 2019. Google Scholar
17. Zheng, Y., L. Wu, Y. Fang, X. Huang, and Q. Lu, "A hybrid interior permanent magnet variable flux memory machine using two-part rotor," IEEE Transactions on Magnetics, Vol. 55, No. 7, 1-8, 2019. Google Scholar
18. Yu, J., C. Liu, Z. Song, and H. Zhao, "Permeance and inductance modeling of a double-stator hybrid-excited flux-switching permanent-magnet machine," IEEE Transactions on Transportation Electrification, Vol. 6, No. 3, 1134-1145, 2020.
doi:10.1109/TTE.2020.3000953 Google Scholar
19. Kato, T., M. Minowa, H. Hijikata, K. Akatsu, and R. D. Lorenz, "Design methodology for variable leakage flux IPM for automobile traction drives," IEEE Transactions on Industry Applications, Vol. 51, No. 5, 3811-3821, 2015.
doi:10.1109/TIA.2015.2439642 Google Scholar
20. Aoyama, M. and T. Noguchi, "Study and experimental performance evaluation of flux intensifying PM motor with variable leakage magnetic flux," Electrical Engineering in Japan, Vol. 207, No. 4, 36-54, 2019.
doi:10.1002/eej.23162 Google Scholar
21. Fan, W., X. Zhu, L. Quan, W. Wu, L. Xu, and Y. Liu, "Flux-weakening capability enhancement design and optimization of a controllable leakage flux multilayer barrier PM motor," IEEE Transactions on Industrial Electronics, Vol. 68, No. 9, 7814-7825, 2021.
doi:10.1109/TIE.2020.3016253 Google Scholar
22. Huang, L. R., J. H. Feng, S. Y. Guo, Y. F. Li, J. X. Shi, and Z. Q. Zhu, "Rotor shaping method for torque ripple mitigation in variable flux reluctance machines," IEEE Transactions on Energy Conversion, Vol. 33, No. 3, 1579-1589, 2018.
doi:10.1109/TEC.2018.2829493 Google Scholar
23. Zhu, X., J. Huang, L. Quan, Z. Xiang, and B. Shi, "Comprehensive sensitivity analysis and multi-objective optimization research of permanent magnet flux-intensifying motors," IEEE Transactions on Industrial Electronics, Vol. 66, No. 4, 2613-2627, 2019.
doi:10.1109/TIE.2018.2849961 Google Scholar