1. Cicchetti, R., E. Miozzi, and O. Testa, "Wideband and UWB antennas for wireless applications: A comprehensive review," International Journal of Antennas and Propagation, Vol. 2017, Article ID 2390808, 45 pages, 2017. Google Scholar
2. Alibakhshi-Kenari, M., M. Naser-Moghadasi, R. Ali Sadeghzadeh, B. Singh Virdee, and E. Limiti, "New compact antenna based on simplified CRLH-TL for UWB wireless communication systems," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 26, No. 3, 217-225, 2016.
doi:10.1002/mmce.20956 Google Scholar
3. Alibakhshi-Kenari, M., M. Naser-Moghadasi, R. Ali Sadeghzadeh, and B. Singh Virdee, "Metamaterial-based antennas for integration in UWB transceivers and portable microwave handsets," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 26, No. 1, 88-96, 2016.
doi:10.1002/mmce.20942 Google Scholar
4. Alibakhshi-Kenari, M. and M. Naser-Moghadasi, "Novel UWB miniaturized integrated antenna based on CRLH metamaterial transmission lines," AEU - International Journal of Electronics and Communications, Vol. 69, No. 8, 1143-1149, 2015.
doi:10.1016/j.aeue.2015.04.017 Google Scholar
5. Sadeghzadeh, R. A., M. Alibakhshikenari, and M. Naser-Moghadasi, "UWB antenna based on SCRLH-TLs for portable wireless devices," Microwave and Optical Technology Letters, Vol. 58, No. 1, 69-71, 2016.
doi:10.1002/mop.29491 Google Scholar
6. Sadeghzadeh, R. A., M. Alibakhshi-Kenari, and M. Naser-Moghadasi, "Composite right-left-handed-based antenna with wide applications in very-high frequency-ultra-high frequency bands for radio transceivers," IET Microwaves, Antennas & Propagation, Vol. 9, No. 15, 1713-1726, December 10, 2015. Google Scholar
7. Alibakhshi Kenari, M., "Design and modeling of new UWB metamaterial planar cavity antennas with shrinking of the physical size for modern transceivers," International Journal of Antennas and Propagation, 1-12, 2013.
doi:10.1155/2013/562538 Google Scholar
8. Alibakhshikenari, M., B. S. Virdee, L. Azpilicueta, et al. "A comprehensive survey of ``metamaterial transmission-line based antennas: Design, challenges, and applications''," IEEE Access, Vol. 8, 144778-144808, 2020.
doi:10.1109/ACCESS.2020.3013698 Google Scholar
9. Alibakhshikenari, M., E. M. Ali, M. Soruri, et al. "A comprehensive survey on antennas on-chip based on metamaterial, metasurface, and substrate integrated waveguide principles for millimeter-waves and terahertz integrated circuits and systems," IEEE Access, Vol. 10, 3668-3692, 2022.
doi:10.1109/ACCESS.2021.3140156 Google Scholar
10. Nadeem, I., M. Alibakhshikenari, F. Babaeian, et al. "A comprehensive survey on ``circular polarized antennas'' for existing and emerging wireless communication technologies," Journal of Physics D: Applied Physics, Vol. 55, No. 3, 033002, October 18, 2021.
doi:10.1088/1361-6463/ac2c36 Google Scholar
11. Alibakhshikenari, M., B. S. Virdee, C. H. See, et al. "Dual-polarized highly folded bowtie antenna with slotted self-grounded structure for sub-6 GHz 5G applications," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 4, 3028-3033, April 2022.
doi:10.1109/TAP.2021.3118784 Google Scholar
12. Alibakhshikenari, M., S. M. Moghaddam, A. Uz Zaman, J. Yang, B. S. Virdee, and E. Limiti, "Wideband sub-6 GHz self-grounded bow-tie antenna with new feeding mechanism for 5G communication systems," 2019 13th European Conference on Antennas and Propagation (EuCAP), 1-4, 2019. Google Scholar
13. Kowalewski, J., J. Eisenbeis, M. Tingulstad, Z. Kollar, and T. Zwick, "Design method for capacity enhancement of pattern-reconfigurable MIMO vehicular antennas," IEEE Antennas Wirel. Propag. Lett., Vol. 18, 2557-2561, 2019.
doi:10.1109/LAWP.2019.2943205 Google Scholar
14. Vasu Babu, K. and B. Anuradha, "Design of Wang shape neutralization line antenna to reduce the mutual coupling in MIMO antennas," Analog. Integr. Circ. Sig. Process., Vol. 101, 67-76, 2019.
doi:10.1007/s10470-019-01397-y Google Scholar
15. Gorai, A., A. Dasgupta, and R. Ghatak, "A compact quasi-self-complementary dual band notched UWB MIMO antenna with enhanced isolation using Hilbert fractal slot," International Journal of Electronics and Communications, 2018. Google Scholar
16. Mohanty, A. and S. Sahu, "High isolation two-port compact MIMO fractal antenna with Wi-Max and X-band suppression characteristics," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 30, 1-11, 2019. Google Scholar
17. Singh, H. S., G. K. Pandey, P. K. Bharti, and M. K. Meshram, "Design and performance investigation of a low-profile MIMO/diversity antenna for WLAN/WiMAX/HIPERLAN applications with high isolation," Int. J. RF Microw., Vol. 25, 510-521, 2015.
doi:10.1002/mmce.20886 Google Scholar
18. Kumar, A., A. Q. Ansari, B. K. Kanaujia, and J. Kishor, "High isolation compact four port MIMO antenna loaded with CSRR for multiband applications," Frequenz, Vol. 72, 415-427, 2018.
doi:10.1515/freq-2017-0276 Google Scholar
19. Chouhan, S., D. K. Panda, V. S. Kushwah, and S. Singhal, "Spider-shaped fractal MIMO antenna for LAN/WiMAX/Wi-Fi/Bluetooth/C-band applications," AEU - International Journal of Electronics and Communications, Vol. 110, 152871, 2019, ISSN 1434-8411.
doi:10.1016/j.aeue.2019.152871 Google Scholar
20. Sree, G. N. J. and S. Nelaturi, "Design and experimental verification of fractal based MIMO antenna for lower sub 6-GHz 5G applications," AEU - International Journal of Electronics and Communications, Vol. 137, 153797, 2021, ISSN 1434-8411.
doi:10.1016/j.aeue.2021.153797 Google Scholar
21. Alibakhshikenari, M., A. Salvucci, G. Polli, et al. "Mutual coupling reduction using metamaterial supersubstrate for high performance & densely packed planar phased arrays," 2018 22nd International Microwave and Radar Conference (MIKON), 675-678, 2018.
doi:10.23919/MIKON.2018.8405323 Google Scholar
22. Alibakhshikenari, M., B. S. Virdee, and E. Limiti, "A technique to suppress mutual coupling in densely packed antenna arrays using metamaterial supersubstrate," 12th European Conference on Antennas and Propagation (EuCAP 2018), London, UK, April 9-13, 2018. Google Scholar
23. Alibakhshikenari, M., B. S. Virdee, C. H. See, R. A. Abd-Alhameed, F. Falcone, and E. Limiti, "Array antenna for synthetic aperture radar operating in X and Ku-bands: A study to enhance isolation between radiation elements,", 1083-1087, Aachen, Germany, June 4-7, 2018. Google Scholar
24. Alibakhshikenari, M., M. Vittori, S. Colangeli, et al. "EM isolation enhancement based on metamaterial concept in antenna array system to support full-duplex application," 2017 IEEE Asia Pacific Microwave Conference (APMC), 740-742, 2017.
doi:10.1109/APMC.2017.8251553 Google Scholar
25. Alibakhshikenari, M., B. S. Virdee, C. H. See, R. Abd-Alhameed, F. Falcone, and E. Limiti, "A new waveguide slot array antenna with high isolation and high antenna bandwidth operation on Ku- and K-bands for radar and MIMO systems," 2018 15th European Radar Conference (EuRAD), 401-404, 2018.
doi:10.23919/EuRAD.2018.8546589 Google Scholar
26. Bukkawar, S. and V. Ahmed, "Compact slot-loaded ultra-wideband multiple input multiple-output antenna with fractal inspired isolator," Int. J. RF Microw. Comput. Aided Eng., e22036, 2019. Google Scholar
27. Biswal, S. P. and S. Das, "A compact printed ultra-wideband multiple-input multiple output prototype with band-notch ability for WiMAX, LTEband43, and WLAN systems," Int. J. RF Microw. Comput. Aided Eng., e21673, 2019.
doi:10.1002/mmce.21673 Google Scholar
28. Hasan, M. N., S. Chu, and S. Bashir, "A DGS monopole antenna loaded with U-shape stub for UWB MIMO applications," Microw. Opt. Technol. Lett., 1-9, 2019. Google Scholar
29. Rajkumar, S., K. T. Selvan, and P. H. Rao, "Compact 4 element Sierpinski Knopp fractal UWB MIMO antenna with dual band notch," Microw. Opt. Technol. Lett., Vol. 60, 1023-1030, 2018.
doi:10.1002/mop.31092 Google Scholar
30. Gurjar, R., D. K. Upadhyay, B. K. Kanaujia, and A. Kumar, "A compact modified Sierpinski carpet fractal UWB MIMO antenna with square-shaped funnel-like ground stub," AEU - International Journal of Electronics and Communications, 153126, 2020.
doi:10.1016/j.aeue.2020.153126 Google Scholar
31. Banerjee, J., A. Karmakar, R. Ghatak, and D. R. Poddar, "Compact CPW-fed UWB MIMO antenna with a novel modified Minkowski fractal Defected Ground Structure (DGS) for high isolation and triple band-notch characteristic," Journal of Electromagnetic Waves and Applications, Vol. 31, No. 15, 1550-1565, 2017.
doi:10.1080/09205071.2017.1354727 Google Scholar
32. Althuwayb, A. A., "Low-interacted multiple antenna systems based on metasurface-inspired isolation approach for MIMO applications," Arab. J. Sci. Eng., Vol. 47, 2629-2638, 2022.
doi:10.1007/s13369-021-05720-6 Google Scholar
33. Alibakhshikenari, M., E. M. Ali, M. Soruri, et al. "A comprehensive survey on antennas on-chip based on metamaterial, metasurface, and substrate integrated waveguide principles for millimeter-waves and terahertz integrated circuits and systems," IEEE Access, Vol. 10, 3668-3692, 2022.
doi:10.1109/ACCESS.2021.3140156 Google Scholar
34. Shrivishal, T., M. Akhilesh, and Y. Sandeep, "A compact octagonal fractal UWB MIMO antenna with WLAN band-rejection," Microwave and Optical Technology Letters, Vol. 57, No. 8, 1919-1925, 2015.
doi:10.1002/mop.29220 Google Scholar
35. Tripathi, S., A. Mohan, and S. Yadav, "A compact Koch fractal UWB MIMO antenna with WLAN band-rejection," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1565-1568, 2015.
doi:10.1109/LAWP.2015.2412659 Google Scholar
36. Rekha, V. S. D., P. Pardhasaradhi, B. T. P. Madhav, and Y. U. Devi, "Dual band notched orthogonal 4-element MIMO antenna with isolation for UWB applications," IEEE Access, Vol. 8, 145871-145880, 2020.
doi:10.1109/ACCESS.2020.3015020 Google Scholar
37. Sharma, M., V. Dhasarathan, S. K. Patel, and T. Khang Nguyen, "An ultra-compact four-port 4×4 superwideband MIMO antenna including mitigation of dual notched bands characteristics designed for wireless network applications," International Journal of Electronics and Communications, Vol. 123, 153332, 2020.
doi:10.1016/j.aeue.2020.153332 Google Scholar
38. Raheja, D. K., B. K. Kanaujia, and S. Kumar, "Compact four-port MIMO antenna on slotted-edge substrate with dual-band rejection characteristics," Int. J. RF Microw. Comput. Aided Eng., e21756, 2019.
doi:10.1002/mmce.21756 Google Scholar
39. Verdhan Singh, H. and S. Tripathi, "Compact UWB MIMO antenna with fork-shaped stub with Vias Based Coupling Current Steering (VBCCS) to enhance isolation using CMA," International Journal of Electronics and Communications, Vol. 129, 153550, 2021.
doi:10.1016/j.aeue.2020.153550 Google Scholar
40. Gómez-Villanueva, R. and H. Jardón-Aguilar, "Compact UWB uniplanar four-port MIMO antenna array with rejecting band," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 12, 2543-2547, December 2019.
doi:10.1109/LAWP.2019.2942827 Google Scholar
41. Tripathi, S., A. Mohan, and S. Yadav, "A compact Koch fractal UWB MIMO antenna with WLAN band-rejection," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1565-1568, 2015.
doi:10.1109/LAWP.2015.2412659 Google Scholar
42. Alam, T., S. R. Thummaluru, and R. K. Chaudhary, "Integration of MIMO and cognitive radio for sub-6 GHz 5G applications," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 10, 2021-2025, October 2019.
doi:10.1109/LAWP.2019.2936312 Google Scholar
43. Saxena, G., Y. K. Awasthi, and P. Jain, "Four-element pentaband MIMO antenna for multiple wireless application including dual-band circular polarization characteristics," International Journal of Microwave and Wireless Technologies, 1-12, 2021. Google Scholar
44. Yin, W., S. Chen, J. Chang, C. Li, and S. K. Khamas, "CPW fed compact UWB 4-element MIMO antenna with high isolation," Sensors, Vol. 21, No. 8, 2688, 2021.
doi:10.3390/s21082688 Google Scholar
45. Alibakhshikenari, M., B. S. Virdee, I. C. See, R. A. Abd-Alhameed, F. Falcone, A. Andújar, J. Anguera, and E. Limiti, "Study on antenna mutual coupling suppression using integrated metasurface isolator for SAR and MIMO applications," 2018 48th European Microwave Conference (EuMC), 1425-1428, Madrid, Spain, September 25-27, 2018. Google Scholar
46. Mark, R., N. Mishra, K. Mandal, P. Pratim Sarkar, and S. Das, "Hexagonal ring fractal antenna with dumb bell shaped defected ground structure for multiband wireless applications," International Journal of Electronics and Communications, Vol. 94, 42-50, 2018.
doi:10.1016/j.aeue.2018.06.039 Google Scholar
47. Thummaluru, S. R., M. Ameen, and R. K. Chaudhary, "Four-port MIMO cognitive radio system for midband 5G applications," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 8, 5634-5645, August 2019.
doi:10.1109/TAP.2019.2918476 Google Scholar
48. Sharawi, M. S., "Printed multi-band MIMO antenna systems and their performance metrics," IEEE Antennas Propag. Mag., Vol. 55, No. 5, 219-232, 2013.
doi:10.1109/MAP.2013.6735522 Google Scholar
49. Naik, M. N. and H. G. Virani, "A compact four port MIMO antenna for millimeterwave applications," Bulletin of Electrical Engineering and Informatics, Vol. 11, No. 2, 2022.
doi:10.11591/eei.v11i2.3689 Google Scholar
50. Karaboikis, M. P., V. C. Papamichael, G. F. Tsachtsiris, C. F. Soras, and V. T. Makios, "Integrating compact printed antennas onto small diversity/MIMO terminals," IEEE Trans. Antennas Propag., Vol. 56, No. 7, 2067-2078, 2008.
doi:10.1109/TAP.2008.924677 Google Scholar