Vol. 131
Latest Volume
All Volumes
PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-03-18
Four Element UWB MIMO Antenna with Improved Isolation Using Resistance Loaded Stub for S, C and X Band Applications
By
Progress In Electromagnetics Research C, Vol. 131, 73-87, 2023
Abstract
This article proposes a four-port multiple input multiple output (MIMO) ultra-wideband (UWB) antenna that operates across 3 to 13 GHz. Four identical fractal patches are placed orthogonally to each other. The uniqueness of the proposed design is that it does not need to incorporate any dedicated/specific design/component to realize notches within the UWB range. The elimination of notches, enhancement of bandwidth, and improvement of isolation have been achieved by integrating a resistance-loaded stub with the ground plane. The isolation between the elements was measured to be below -20 dB across the entire operating band. The fabricated prototype exhibits better diversity parameters like envelop correlation coefficient (ECC) < 0.003, diversity gain (DG) > 9.99, channel capacity loss (CCL) < 0.4 bps/Hz, and mean effective gain (MEG) < 2 dB. The proposed MIMO antenna shows omnidirectional radiation patterns with a peak gain of 5.4 dBi and radiation efficiency > 66% with required compactness having interelement (edge to edge) distance of 5.4 mm. After application of decoupling method radiation efficiency varies from 66% to 82% with gain ranging between 1.8 and 5.54 dBi. The diverse performance of the fabricated MIMO proves it to be a good candidate for UBW imaging, LTE applications, and S, C, and X band applications.
Citation
Sumit Kumar Gupta, Robert Mark, Kaushik Mandal, and Soma Das, "Four Element UWB MIMO Antenna with Improved Isolation Using Resistance Loaded Stub for S, C and X Band Applications," Progress In Electromagnetics Research C, Vol. 131, 73-87, 2023.
doi:10.2528/PIERC22120507
References

1. Cicchetti, R., E. Miozzi, and O. Testa, "Wideband and UWB antennas for wireless applications: A comprehensive review," International Journal of Antennas and Propagation, Vol. 2017, Article ID 2390808, 45 pages, 2017.        Google Scholar

2. Alibakhshi-Kenari, M., M. Naser-Moghadasi, R. Ali Sadeghzadeh, B. Singh Virdee, and E. Limiti, "New compact antenna based on simplified CRLH-TL for UWB wireless communication systems," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 26, No. 3, 217-225, 2016.
doi:10.1002/mmce.20956        Google Scholar

3. Alibakhshi-Kenari, M., M. Naser-Moghadasi, R. Ali Sadeghzadeh, and B. Singh Virdee, "Metamaterial-based antennas for integration in UWB transceivers and portable microwave handsets," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 26, No. 1, 88-96, 2016.
doi:10.1002/mmce.20942        Google Scholar

4. Alibakhshi-Kenari, M. and M. Naser-Moghadasi, "Novel UWB miniaturized integrated antenna based on CRLH metamaterial transmission lines," AEU - International Journal of Electronics and Communications, Vol. 69, No. 8, 1143-1149, 2015.
doi:10.1016/j.aeue.2015.04.017        Google Scholar

5. Sadeghzadeh, R. A., M. Alibakhshikenari, and M. Naser-Moghadasi, "UWB antenna based on SCRLH-TLs for portable wireless devices," Microwave and Optical Technology Letters, Vol. 58, No. 1, 69-71, 2016.
doi:10.1002/mop.29491        Google Scholar

6. Sadeghzadeh, R. A., M. Alibakhshi-Kenari, and M. Naser-Moghadasi, "Composite right-left-handed-based antenna with wide applications in very-high frequency-ultra-high frequency bands for radio transceivers," IET Microwaves, Antennas & Propagation, Vol. 9, No. 15, 1713-1726, December 10, 2015.        Google Scholar

7. Alibakhshi Kenari, M., "Design and modeling of new UWB metamaterial planar cavity antennas with shrinking of the physical size for modern transceivers," International Journal of Antennas and Propagation, 1-12, 2013.
doi:10.1155/2013/562538        Google Scholar

8. Alibakhshikenari, M., B. S. Virdee, L. Azpilicueta, et al. "A comprehensive survey of ``metamaterial transmission-line based antennas: Design, challenges, and applications''," IEEE Access, Vol. 8, 144778-144808, 2020.
doi:10.1109/ACCESS.2020.3013698        Google Scholar

9. Alibakhshikenari, M., E. M. Ali, M. Soruri, et al. "A comprehensive survey on antennas on-chip based on metamaterial, metasurface, and substrate integrated waveguide principles for millimeter-waves and terahertz integrated circuits and systems," IEEE Access, Vol. 10, 3668-3692, 2022.
doi:10.1109/ACCESS.2021.3140156        Google Scholar

10. Nadeem, I., M. Alibakhshikenari, F. Babaeian, et al. "A comprehensive survey on ``circular polarized antennas'' for existing and emerging wireless communication technologies," Journal of Physics D: Applied Physics, Vol. 55, No. 3, 033002, October 18, 2021.
doi:10.1088/1361-6463/ac2c36        Google Scholar

11. Alibakhshikenari, M., B. S. Virdee, C. H. See, et al. "Dual-polarized highly folded bowtie antenna with slotted self-grounded structure for sub-6 GHz 5G applications," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 4, 3028-3033, April 2022.
doi:10.1109/TAP.2021.3118784        Google Scholar

12. Alibakhshikenari, M., S. M. Moghaddam, A. Uz Zaman, J. Yang, B. S. Virdee, and E. Limiti, "Wideband sub-6 GHz self-grounded bow-tie antenna with new feeding mechanism for 5G communication systems," 2019 13th European Conference on Antennas and Propagation (EuCAP), 1-4, 2019.        Google Scholar

13. Kowalewski, J., J. Eisenbeis, M. Tingulstad, Z. Kollar, and T. Zwick, "Design method for capacity enhancement of pattern-reconfigurable MIMO vehicular antennas," IEEE Antennas Wirel. Propag. Lett., Vol. 18, 2557-2561, 2019.
doi:10.1109/LAWP.2019.2943205        Google Scholar

14. Vasu Babu, K. and B. Anuradha, "Design of Wang shape neutralization line antenna to reduce the mutual coupling in MIMO antennas," Analog. Integr. Circ. Sig. Process., Vol. 101, 67-76, 2019.
doi:10.1007/s10470-019-01397-y        Google Scholar

15. Gorai, A., A. Dasgupta, and R. Ghatak, "A compact quasi-self-complementary dual band notched UWB MIMO antenna with enhanced isolation using Hilbert fractal slot," International Journal of Electronics and Communications, 2018.        Google Scholar

16. Mohanty, A. and S. Sahu, "High isolation two-port compact MIMO fractal antenna with Wi-Max and X-band suppression characteristics," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 30, 1-11, 2019.        Google Scholar

17. Singh, H. S., G. K. Pandey, P. K. Bharti, and M. K. Meshram, "Design and performance investigation of a low-profile MIMO/diversity antenna for WLAN/WiMAX/HIPERLAN applications with high isolation," Int. J. RF Microw., Vol. 25, 510-521, 2015.
doi:10.1002/mmce.20886        Google Scholar

18. Kumar, A., A. Q. Ansari, B. K. Kanaujia, and J. Kishor, "High isolation compact four port MIMO antenna loaded with CSRR for multiband applications," Frequenz, Vol. 72, 415-427, 2018.
doi:10.1515/freq-2017-0276        Google Scholar

19. Chouhan, S., D. K. Panda, V. S. Kushwah, and S. Singhal, "Spider-shaped fractal MIMO antenna for LAN/WiMAX/Wi-Fi/Bluetooth/C-band applications," AEU - International Journal of Electronics and Communications, Vol. 110, 152871, 2019, ISSN 1434-8411.
doi:10.1016/j.aeue.2019.152871        Google Scholar

20. Sree, G. N. J. and S. Nelaturi, "Design and experimental verification of fractal based MIMO antenna for lower sub 6-GHz 5G applications," AEU - International Journal of Electronics and Communications, Vol. 137, 153797, 2021, ISSN 1434-8411.
doi:10.1016/j.aeue.2021.153797        Google Scholar

21. Alibakhshikenari, M., A. Salvucci, G. Polli, et al. "Mutual coupling reduction using metamaterial supersubstrate for high performance & densely packed planar phased arrays," 2018 22nd International Microwave and Radar Conference (MIKON), 675-678, 2018.
doi:10.23919/MIKON.2018.8405323        Google Scholar

22. Alibakhshikenari, M., B. S. Virdee, and E. Limiti, "A technique to suppress mutual coupling in densely packed antenna arrays using metamaterial supersubstrate," 12th European Conference on Antennas and Propagation (EuCAP 2018), London, UK, April 9-13, 2018.        Google Scholar

23. Alibakhshikenari, M., B. S. Virdee, C. H. See, R. A. Abd-Alhameed, F. Falcone, and E. Limiti, "Array antenna for synthetic aperture radar operating in X and Ku-bands: A study to enhance isolation between radiation elements,", 1083-1087, Aachen, Germany, June 4-7, 2018.        Google Scholar

24. Alibakhshikenari, M., M. Vittori, S. Colangeli, et al. "EM isolation enhancement based on metamaterial concept in antenna array system to support full-duplex application," 2017 IEEE Asia Pacific Microwave Conference (APMC), 740-742, 2017.
doi:10.1109/APMC.2017.8251553        Google Scholar

25. Alibakhshikenari, M., B. S. Virdee, C. H. See, R. Abd-Alhameed, F. Falcone, and E. Limiti, "A new waveguide slot array antenna with high isolation and high antenna bandwidth operation on Ku- and K-bands for radar and MIMO systems," 2018 15th European Radar Conference (EuRAD), 401-404, 2018.
doi:10.23919/EuRAD.2018.8546589        Google Scholar

26. Bukkawar, S. and V. Ahmed, "Compact slot-loaded ultra-wideband multiple input multiple-output antenna with fractal inspired isolator," Int. J. RF Microw. Comput. Aided Eng., e22036, 2019.        Google Scholar

27. Biswal, S. P. and S. Das, "A compact printed ultra-wideband multiple-input multiple output prototype with band-notch ability for WiMAX, LTEband43, and WLAN systems," Int. J. RF Microw. Comput. Aided Eng., e21673, 2019.
doi:10.1002/mmce.21673        Google Scholar

28. Hasan, M. N., S. Chu, and S. Bashir, "A DGS monopole antenna loaded with U-shape stub for UWB MIMO applications," Microw. Opt. Technol. Lett., 1-9, 2019.        Google Scholar

29. Rajkumar, S., K. T. Selvan, and P. H. Rao, "Compact 4 element Sierpinski Knopp fractal UWB MIMO antenna with dual band notch," Microw. Opt. Technol. Lett., Vol. 60, 1023-1030, 2018.
doi:10.1002/mop.31092        Google Scholar

30. Gurjar, R., D. K. Upadhyay, B. K. Kanaujia, and A. Kumar, "A compact modified Sierpinski carpet fractal UWB MIMO antenna with square-shaped funnel-like ground stub," AEU - International Journal of Electronics and Communications, 153126, 2020.
doi:10.1016/j.aeue.2020.153126        Google Scholar

31. Banerjee, J., A. Karmakar, R. Ghatak, and D. R. Poddar, "Compact CPW-fed UWB MIMO antenna with a novel modified Minkowski fractal Defected Ground Structure (DGS) for high isolation and triple band-notch characteristic," Journal of Electromagnetic Waves and Applications, Vol. 31, No. 15, 1550-1565, 2017.
doi:10.1080/09205071.2017.1354727        Google Scholar

32. Althuwayb, A. A., "Low-interacted multiple antenna systems based on metasurface-inspired isolation approach for MIMO applications," Arab. J. Sci. Eng., Vol. 47, 2629-2638, 2022.
doi:10.1007/s13369-021-05720-6        Google Scholar

33. Alibakhshikenari, M., E. M. Ali, M. Soruri, et al. "A comprehensive survey on antennas on-chip based on metamaterial, metasurface, and substrate integrated waveguide principles for millimeter-waves and terahertz integrated circuits and systems," IEEE Access, Vol. 10, 3668-3692, 2022.
doi:10.1109/ACCESS.2021.3140156        Google Scholar

34. Shrivishal, T., M. Akhilesh, and Y. Sandeep, "A compact octagonal fractal UWB MIMO antenna with WLAN band-rejection," Microwave and Optical Technology Letters, Vol. 57, No. 8, 1919-1925, 2015.
doi:10.1002/mop.29220        Google Scholar

35. Tripathi, S., A. Mohan, and S. Yadav, "A compact Koch fractal UWB MIMO antenna with WLAN band-rejection," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1565-1568, 2015.
doi:10.1109/LAWP.2015.2412659        Google Scholar

36. Rekha, V. S. D., P. Pardhasaradhi, B. T. P. Madhav, and Y. U. Devi, "Dual band notched orthogonal 4-element MIMO antenna with isolation for UWB applications," IEEE Access, Vol. 8, 145871-145880, 2020.
doi:10.1109/ACCESS.2020.3015020        Google Scholar

37. Sharma, M., V. Dhasarathan, S. K. Patel, and T. Khang Nguyen, "An ultra-compact four-port 4×4 superwideband MIMO antenna including mitigation of dual notched bands characteristics designed for wireless network applications," International Journal of Electronics and Communications, Vol. 123, 153332, 2020.
doi:10.1016/j.aeue.2020.153332        Google Scholar

38. Raheja, D. K., B. K. Kanaujia, and S. Kumar, "Compact four-port MIMO antenna on slotted-edge substrate with dual-band rejection characteristics," Int. J. RF Microw. Comput. Aided Eng., e21756, 2019.
doi:10.1002/mmce.21756        Google Scholar

39. Verdhan Singh, H. and S. Tripathi, "Compact UWB MIMO antenna with fork-shaped stub with Vias Based Coupling Current Steering (VBCCS) to enhance isolation using CMA," International Journal of Electronics and Communications, Vol. 129, 153550, 2021.
doi:10.1016/j.aeue.2020.153550        Google Scholar

40. Gómez-Villanueva, R. and H. Jardón-Aguilar, "Compact UWB uniplanar four-port MIMO antenna array with rejecting band," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 12, 2543-2547, December 2019.
doi:10.1109/LAWP.2019.2942827        Google Scholar

41. Tripathi, S., A. Mohan, and S. Yadav, "A compact Koch fractal UWB MIMO antenna with WLAN band-rejection," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1565-1568, 2015.
doi:10.1109/LAWP.2015.2412659        Google Scholar

42. Alam, T., S. R. Thummaluru, and R. K. Chaudhary, "Integration of MIMO and cognitive radio for sub-6 GHz 5G applications," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 10, 2021-2025, October 2019.
doi:10.1109/LAWP.2019.2936312        Google Scholar

43. Saxena, G., Y. K. Awasthi, and P. Jain, "Four-element pentaband MIMO antenna for multiple wireless application including dual-band circular polarization characteristics," International Journal of Microwave and Wireless Technologies, 1-12, 2021.        Google Scholar

44. Yin, W., S. Chen, J. Chang, C. Li, and S. K. Khamas, "CPW fed compact UWB 4-element MIMO antenna with high isolation," Sensors, Vol. 21, No. 8, 2688, 2021.
doi:10.3390/s21082688        Google Scholar

45. Alibakhshikenari, M., B. S. Virdee, I. C. See, R. A. Abd-Alhameed, F. Falcone, A. Andújar, J. Anguera, and E. Limiti, "Study on antenna mutual coupling suppression using integrated metasurface isolator for SAR and MIMO applications," 2018 48th European Microwave Conference (EuMC), 1425-1428, Madrid, Spain, September 25-27, 2018.        Google Scholar

46. Mark, R., N. Mishra, K. Mandal, P. Pratim Sarkar, and S. Das, "Hexagonal ring fractal antenna with dumb bell shaped defected ground structure for multiband wireless applications," International Journal of Electronics and Communications, Vol. 94, 42-50, 2018.
doi:10.1016/j.aeue.2018.06.039        Google Scholar

47. Thummaluru, S. R., M. Ameen, and R. K. Chaudhary, "Four-port MIMO cognitive radio system for midband 5G applications," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 8, 5634-5645, August 2019.
doi:10.1109/TAP.2019.2918476        Google Scholar

48. Sharawi, M. S., "Printed multi-band MIMO antenna systems and their performance metrics," IEEE Antennas Propag. Mag., Vol. 55, No. 5, 219-232, 2013.
doi:10.1109/MAP.2013.6735522        Google Scholar

49. Naik, M. N. and H. G. Virani, "A compact four port MIMO antenna for millimeterwave applications," Bulletin of Electrical Engineering and Informatics, Vol. 11, No. 2, 2022.
doi:10.11591/eei.v11i2.3689        Google Scholar

50. Karaboikis, M. P., V. C. Papamichael, G. F. Tsachtsiris, C. F. Soras, and V. T. Makios, "Integrating compact printed antennas onto small diversity/MIMO terminals," IEEE Trans. Antennas Propag., Vol. 56, No. 7, 2067-2078, 2008.
doi:10.1109/TAP.2008.924677        Google Scholar